DENOMINACIÓN DE LA ASIGNATURA

Denominación: MANIPULACIÓN CROMOSÓMICA EN PLANTAS

Código: 103095

Plan de estudios: MÁSTER UNIVERSITARIO EN BIOTECNOLOGÍA Curso: 1

Créditos ECTS: 4.0 Horas de trabajo presencial: 30

Porcentaje de presencialidad: 30.0% Horas de trabajo no presencial: 70

Plataforma virtual: moodle

DATOS DEL PROFESORADO

Nombre: CABRERA CABALLERO, ADORACION (Coordinador)

Departamento: GENÉTICA

Área: GENÉTICA

Ubicación del despacho: C5-Mendel

E-Mail: ge1cabca@uco.es Teléfono: 957 21 85 10

Nombre: MORENO PINEL, ROBERTO Departamento: PROFESORADO EXTERNO

Área: PROFESORADO EXTERNO Ubicación del despacho: C5-Mendel

E-Mail: ge2mopir@uco.es Teléfono: 957 21 85 10

Nombre: PRIETO ARANDA, MARÍA PILAR Departamento: PROFESORADO EXTERNO

Área: PROFESORADO EXTERNO

Ubicación del despacho: Edificio anexo IAS

E-Mail: pilar.prieto@ias.csic.es Teléfono: 957 49 92 93

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno

Recomendaciones

Ninguna

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

COMPETENCIAS

CB10	Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
CB6	Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
СВ7	Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
СВ8	Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
CB9	Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
CE1	Sentirse comprometido con la Biotecnología para mejorar el bienestar (salud, economía, medioambiente) de la Sociedad
CE10	Sentirse comprometido con la investigación cono herramienta para fomentar los avances biotecnológicos que contribuyan al bienestar de las personas y la sostenibilidad de su entorno.
CE13	Capacidad de integrar conocimientos básicos y biotecnológicos, aplicaciones, servicios y sistemas con carácter generalista para su aplicación en al ámbito industrial en un entorno de gestión medioambiental sostenible.
CE14	Conocimiento de las sinergias e integración de las metodologías moleculares, genómicas y proteómicas en la identificación de biomarcadores moleculares para la monitorización de la calidad ambiental y sus efectos sobre los seres vivos.
CE2	Comprensión sistemática y dominio de las habilidades, métodos de investigación y técnicas relacionados con la Biotecnología.
CE3	Capacidad de interpretar y comprender textos científicos y técnicos especializados en el área de la Biotecnología.
CE4	Saber utilizar y valorar las fuentes de información, herramientas informáticas y recursos electrónicos para la elección y uso de las diferentes aproximaciones metodológicas en Biotecnología.
CE5	Poseer formación científica avanzada, multidisciplinar e integradora en el área de la Biotecnología, orientada a la investigación básica y aplicada y al desarrollo de productos, bienes y servicios en base a la manipulación selectiva y programada de los procesos celulares y biomoleculares.
CE6	Entender las principales teorías sobre el conocimiento científico en el área de la Biotecnología así como las repercusiones profesionales, sociales y éticas de dicha investigación
CE7	Capacidad de comunicar de manera eficaz los avances dentro del ámbito de la Biotecnología, así como sus implicaciones éticas y sociales, tanto a expertos como a un público no especializado.
CE8	Capacidad para aplicar los principios de la Biotecnología y de la gestión de recursos humanos y proyectos, así como la legislación, regulación y normalización de los reglamentos que se les aplican.
CE9	Adquirir conocimientos generales sobre las técnicas básicas para la selección y mejora biotecnológicos de microorganismos, plantas, y animales o enzimas obtenidos de ellos.
CG1	Ser capaz de comprender y aplicar los modelos y métodos avanzados de análisis cualitativo y cuantitativo en el área de la materia correspondiente.
CG2	Capacidad para comprender y aplicar la responsabilidad ética, la legislación y la deontología profesional de la actividad de la profesión
CG3	Poseer las habilidades de aprendizaje que les permitan realizar un análisis crítico, evaluación y síntesis de ideas nuevas.
CG4	Saber identificar preguntas de investigación y darles respuesta mediante el desarrollo de un proyecto de investigación

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

CG5	Capacidad de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o
	cultural dentro de una sociedad basada en el conocimiento
CG6	Saber analizar e interpretar los resultados obtenidos con el objeto de obtener conclusiones biológicas
	relevantes a partir de los mismos.
CG7	Poseer una base formativa sólida tanto para iniciar una carrera investigadora a través de la
	realización del Doctorado como para desarrollar tareas profesionales especializadas en el ámbito de la
	Biotecnología que no requieran del título de Doctor.
CG8	Capacidad para comprender y aplicar la responsabilidad ética, la legislación y la deontología
	profesional de la actividad de la profesión
CT1	Demostrar la capacidad de concebir, diseñar, y desarrollar un proyecto integral de investigación, con
	suficiente solvencia técnica y seriedad académica.
CT2	Capacidad de fomentar, en contextos académicos y profesionales, el avance tecnológico, social o
	cultural dentro de una sociedad basada en el conocimiento
CT3	Poseer las siguientes capacidades y habilidades: análisis y síntesis, organización y planificación,
	comunicación oral y escrita, resolución de problemas, toma de decisiones, trabajo en equipo,
	razonamiento crítico, aprendizaje autónomo, creatividad, capacidad de aplicar los conocimientos
	teóricos en la práctica, uso de Internet como medio de comunicación y como fuente de información.
CT4	Actuar profesionalmente desde el respeto y la promoción de los derechos humanos, los principios de
	accesibilidad universal de las personas con discapacidad, el respeto a los derechos fundamentales de

OBJETIVOS

Conocer y utilizar las herramientas y tecnologías disponibles actualmente para el estudio de los cambios en la estructura, el número, la función y el comportamiento de los cromosomas, así como su aplicación al conocimiento del genoma de especies vegetales y su aplicación en mejora de especies cultivadas.

igualdad y de acuerdo con los valores propios de una cultura de paz y valores democráticos.

CONTENIDOS

1. Contenidos teóricos

- **Tema 1.** El cromosoma eucarótico. Métodos de análisis cromosómico. El material biológico. Equipos y agentes químicos. Pretratamientos, fijación y tinción. Bandeo cromosómico. El cariotipo. Características de los cromosomas: forma, tamaño y número.
- **Tema 2.** La hibridación in situ. Principios básicos. Sondas y métodos de marcado. FISH y GISH. Hibridación y principios de astringencia. Métodos de detección. Aplicaciones.
- **Tema 3.** Variaciones cromosómicas numéricas y estructurales. Tipos e Inducción. Acción de los agentes físicos, químicos y biológicos. Poliploidía: definición y tipos. Origen y comportamiento citogenético. Importancia evolutiva.
- **Tema 4.** Introgresión de genes en plantas. Métodos para transferir regiones cromosómicas o genes. Híbridos interespecíficos y poliploidía artificial. Síntesis de nuevas especies. Obtención de series aneuploides: líneas de adición y sustitución cromosómica.
- **Tema 5.** Mapas genéticos y citogenéticos. Utilización de deleciones, translocaciones, telocéntricos y otros aneuploides para la localización de genes y/o marcadores moleculares. Comparación de mapas citogenéticos y de recombinación. Organización de la información genética en los cromosomas.
- **Tema 6.** Cuantificación y microclonación de ADN cromosómico. Citometría de flujo. Microdisección y microclonación.
- **Tema 7.** Meiosis. Aspectos citológicos. Apareamiento entre cromosomas homólogos y homeólogos. Control genético de la meiosis. Utilización de mutantes que afectan al apareamiento y la recombinación.
- Tema 8. Microscopía confocal en tejidos vegetales intactos. Ventajas y aplicaciones.
- Tema 9. Territorios cromosómicos y organización espacial del núcleo.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

2. Contenidos prácticos

- Realización de preparaciones cromosómicas en mitosis y meiosis. Conteos cromosómicos.
- Citometría de flujo

OBJETIVOS DE DESARROLLO SOSTENIBLE RELACIONADOS CON LOS CONTENIDOS

Hambre cero

METODOLOGÍA

Actividades presenciales

Actividad	Total
Actividades de evaluación	5
Laboratorio	5
Lección magistral	10
Seminario	10
Total horas:	30

Actividades no presenciales

	Actividad	Total
h	Búsqueda de información	20
	Consultas bibliográficas	15
	Estudio	20
	Preparación de seminarios	15
	Total horas:	70

MATERIAL DE TRABAJO PARA EL ALUMNO

Cuaderno de Prácticas Presentaciones PowerPoint Referencias Bibliográficas Resumenes de los temas

EVALUACIÓN

Instrumentos	Porcentaje
Asistencia (lista de control)	10%
Examen final	50%

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

Instrumentos	Porcentaje
Informes/memorias de prácticas	10%
Seminarios	30%

Periodo de validez de las calificaciones parciales:

Duración del año académico

Aclaraciones:

<u>BIBLI</u>OGRAFIA

1. Bibliografía básica

Able et al (2009) Understanding meiosis and the implications for crop improvement. Functional Plant Biology, 36: 575-588.

Alseekh et al (2013) Resolution by recombination: breaking up $Solanum\ pennellii\ introgressions$. Trends Plant Sci 18:536–538. doi:10.1016/j.tplants.2013.08.003

Bebber et al (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Change 3:985-988. doi:10.1038/nclimate1990

Blary, and Jenczewski, (2019) Manipulation of crossover frequency and distribution for plant breeding. Theoretical and applied Genetics, 132: 575-592. 10.1007/s00122-018-3240-1

Blennow (2004). Reverse painting highlights the origin of chromosome aberrations. Chromosome Res 12: 25-33.

Bennett MD (1998) Plant genome values: How much do we know? PNAS 95: 2011-2016.

Buggs (2013) Unravelling gene expression of complex crop genomes. Heredity 110, 97-98.

Brozynska et al. (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal 14, pp. 1070-1085. doi: 10.1111/pbi.12454

Castanñeda et al. (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022. doi:10.1038/nplants.2016.22

Cremer and Cremer (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2010;2:a003889 http://cshperspectives.cshlp.org/.

Connant et al (2014) Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Current Opinion in Plant Biology 9:91-98. http://dx.doi.org/10.1016/j.pbi. 2014.05.008

De Storne and Mason (2014) Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1 (2014) 10–33. http://dx.doi.org/10.1016/j.cpb.2014.09.002

Dempewolf et al. (2017)Past and Future Use of Wild Relatives in Crop Breeding.. Crop Sci. 57:1070-1082. doi: 10.2135/cropsci2016.10.0885

Dogan and Liu (2018) Three-dimensional chromatin packing and positioning of plant genomes. Nature plants. 4 521–529. https://doi.org/10.1038/s41477-0

Dolezel et al. (2004). Flow cytogenetics and plant genome mapping. Chromosome Res 12:77-91.

Dolezel et al. (2005). Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Annals of Botany 95:99-110.

Dwivedi et al. (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30: 179-230. doi:10.1002/9780470380130.ch3

Endo (1988). Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J. Hered. 79:366-370.

Friebe et al. (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests:

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

current status*Euphytica 91:59-87

Griffiths et al. (2006) Molecular characterisation of Ph1 as a major chromosome pairing locus in hexaploid wheat. Nature 439:749-752.

Gupta et al. (2016) Molecular-cytogenetic characterization of C-genome chromosome substitution lines in *Brassica juncea* (L.) Czern and Coss. Theor Appl Genet 129:1153-1166. DOI 10.1007/s00122-016-2692-4

Hajjar and Hodgkin (2007) The use of wild relatives in crop improvement: A surveyof developments over the last 20 years. Euphytica 156: 1-13

Jiang and Gill (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057-1068.

Jiang (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Research, 3: 153-165. 10.1007/s10577-019-09607-z

Khlestkina (2014). Current applications of wheat and wheat-alien precise genetic stocks. Molecular Breeding. 34: 273-281. DOI 10.1007/s11032-014-0049-8

Mable (2013). Polyploids and hybrids in changing environments: winners or losers in the struggle for adaptation? Heredity 110: 95-96.

Madlung (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99-104.

Meirmans and Van Tienderen (2013). The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131-137.

Neiman et al. (2013). Can resource costs of polyploidy provide an advantage to sex? Heredity 110, 152-159.

Nicomedi et al. (2014) Models of chromosome structure. Curr Opin Cell Biol 28:90-95 http://dx.doi.org/10.1016/j. ceb.2014.04.004

Prohens et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158. DOI 10.1007/s10681-017-1938-9

Udall and Wendel (2006) Polyploidy and crop improvement. Crop Science, 46:S3-S14.

Ramzan et al (2017) Application of Genomic In Situ Hybridization in Horticultural Science. International Journal of Genomics. https://doi.org/10.1155/2017/7561909

Rawale, et al (2019) The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in Triticum turgidum ssp. dicoccoides via a dramatic meiosis-specific increase in the expression of the 5B copy of the C-Ph1 gene. Chromosoma, 128:561-570. 10.1007/s00412-019-00724-6.

Repellin et al (2001) Genetic enrichment of cereal crops via alien gene transfer: New challenges. Plant Cell Tiss Organ Cult 64:159-183.

Schiessl, et al (2019) The role of genomic structural variation in the genetic improvement of polyploid crops. The Plant Journal, 7:127-140. https://doi.org/10.1016/j.cj.2018.07.006

Sehgal et al (2014) Gene density and chromosome territory shape. Chromosoma 123:499-513 doi: 10.1007/s00412-014-0480-y

Sourdille et al. (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) Funct Integr Genomics 4:12-25.

Szalaj et al. (2018) Three-dimensional organization and dynamics of the genome. Cell Biol Toxicol https://doi. org/10.1007/s10565-018-9428-y

Wijnker and de Jong (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci13:640-646.

Younis, et al. (2014). Exploitation of induced 2n-gametes for plant breeding. Plat Cell Reports, 33: 215-223. 10.1007/s00299-013-1534-y

Younis et al. (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep (2015) 34:1477-1488. DOI 10.1007/s00299-015-1828-3

2. Bibliografía complementaria

Gabur et al 2019. Connecting genome structural variation with complex traits in crop plants. Theor Appl Genet 132: 733-750. 10.1007/s00122-018-3233-0

Hao et al. 2020. The resurgence of introgression breeding as exemplified in wheat improvement. Fron Plant Sci 11: 252. 10.3389/fpls.2020.00252

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

Jiang 2019. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 27: 153-165.10.1007/s10577-019-09607-z

Sedeek et al. 2019. Plant genome engineering for targeted improvement of crop traits. Fron PLant Sci 10: 114. 10.3389/fpls.2019.00114

Schiessl et al. 2019. The role of genomic structural variation in the genetic improvement of polyploid crops. The Crop J 7: 127-140. https://doi.org/10.1016/j.cj.2018.07.006

Las estrategias metodológicas y el sistema de evaluación contempladas en esta Guía Docente serán adaptadas de acuerdo a las necesidades presentadas por estudiantes con discapacidad y necesidades educativas especiales en los casos que se requieran.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA