DENOMINACIÓN DE LA ASIGNATURA

Denominación: QUÍMICA INORGÁNICA AVANZADA

Código: 620003

Plan de estudios: MÁSTER UNIVERSITARIO EN QUÍMICA APLICADA POR LA Curso: 1

UNIVERSIDAD DE CÓRDOBA; LA UNIVERSIDAD DE HUELVA;

LA

PCEO MÁSTER UNIVERSITARIO EN PROFESORADO DE ENSEÑANZA SECUNDARIA OBLIGATORIA Y BACHILLERATO,

FORMACI

Créditos ECTS: 5.0 Horas de trabajo presencial: 38

Porcentaje de presencialidad: 30.0% Horas de trabajo no presencial: 87

Plataforma virtual: Moodle

DATOS DEL PROFESORADO

Nombre: PÉREZ VICENTE, CARLOS (Coordinador)

Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

Área: QUÍMICA INORGÁNICA

Ubicación del despacho: Edificio C3, planta 1

E-Mail: iq3pevic@uco.es Teléfono: 957218665

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno

Recomendaciones

Ninguna especificada

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

COMPETENCIAS

CG4	Que los estudiantes conozcan la necesidad de fomentar, en contextos académicos y profesionales, el
	avance científico, tecnológico, social o cultural en los que la Química desempeña una función básica
	dentro de una sociedad basada en el conocimiento.
CB8	Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de
	formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones
	sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
СВ9	Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las
	sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
CB10	Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de
	un modo que habrá de ser en gran medida autodirigido o autónomo.
CT2	Que el estudiante sepa utilizar herramientas de información y comunicación que permitan plantear
	resolver problemas nuevos dentro de contextos relacionados con su área de estudio
CE2	Seleccionar la instrumentación química y recursos informáticos adecuados para el estudio a realizar y
	aplicar sus conocimientos para utilizarla de manera correcta
CE4	Capacidad de aplicar y adaptar los modelos teóricos y las técnicas específicas tanto a problemas
	abiertos en su línea de especialización como a problemas provenientes de otros ámbitos, ya sean
	científicos o técnicos
CE10	Conocer los aspectos termodinámicos y cinéticos a los compuestos de coordinación
CE11	Conocer las principales reacciones de los compuestos organometálicos
CE12	Justificar las principales aplicaciones de los compuestos de coordinación y organometálicos
CE13	Conocer las técnicas de caracterización estructural y su aplicabilidad a la caracterización de
	compuestos químicos
CE14	Capacidad de correlacionar la estructura química con las propiedades de los compuestos químicos
CE15	Saber aplicar los métodos de síntesis química a la obtención de sólidos inorgánicos
CE16	Saber relacionar las propiedades de los compuestos con sus aplicaciones

OBJETIVOS

Los alumnos serán capaces individualmente o integrados en equipos multidisciplinares de desarrollar los siguientes objetivos:

- -Saber aplicar los aspectos termodinámicos y cinéticos a la química de los compuestos organometálicos.
- -Conocer las principales reacciones de los compuestos organometálicos.
- -Valorar los principales métodos de síntesis de sólidos Inorgánicos.
- -Comparar las técnicas de caracterización de sólidos.
- -Justificar las propiedades de los sólidos inorgánicos atendiendo a su estructura
- -Conocer las aplicaciones de los compuestos organometálicos y solidos inorgánicos en función de sus propiedades.

CONTENIDOS

1. Contenidos teóricos

Bloque 1. Propiedades y Reactividad de los Compuestos Organometálicos: Aplicación a la Catálisis **Ho**mogénea

Universidad de Huelva

- Revisión de aspectos básicos de la química de compuestos organometálicos (enlace, tipos de ligandos, ...) (0.25 cr)

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

- Reacciones de adición oxidante y eliminación reductora. (0.5 cr)
- Reacciones de inserción y eliminación. (0.5 cr)

Universidad de Málaga

- Reacciones de complejos nucleófilos y electrófilos (0.5 cr)
- Aplicaciones a la catálisis Homogénea (0.75 cr)

Bloque 2. Síntesis, Caracterización, Propiedades y Aplicaciones de Sólidos Inorgánico.

Universidad de Córdoba

- Métodos de síntesis (0.5cr)
- Caracterización de sólidos y revisión de aspectos estructurales (0.75cr)

Universidad de Jaén

- Propiedades y Aplicaciones de los sólidos. (1.25 cr)

2. Contenidos prácticos

Ejercicios y seminarios relaciones con los bloques del contenido teórico

OBJETIVOS DE DESARROLLO SOSTENIBLE RELACIONADOS CON LOS CONTENIDOS

Energía asequible y no contaminante Acción por el clima

METODOLOGÍA

Actividades presenciales

Actividad	Total
Actividades de evaluación	2
Lección magistral	30
Seminario	6
Total horas:	38

Actividades no presenciales

Actividad	Total
Búsqueda de información	17
Consultas bibliográficas	20
Ejercicios	20
Estudio	30

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

Actividad	Total
Total horas:	87

MATERIAL DE TRABAJO PARA EL ALUMNO

Ejercicios y problemas Presentaciones PowerPoint Referencias Bibliográficas

EVALUACIÓN

Instrumentos	Porcentaje
Exámenes	60%
Pruebas de respuesta corta	20%
Pruebas de respuesta larga (desarrollo)	20%

Periodo de validez de las calificaciones parciales:

Curso academico 2022-23

Aclaraciones:

BIBLIOGRAFIA

1. Bibliografía básica

Christoph Elschenbroich "Organometallics: A Concise Introduction" Wiley-VCH Verlag GmbH 3ª ed 2006

D. Astruc "Química organometálica" Editorial Revertede (2003) ISBN: 8429170073

Manfred Bochmann "Organometallics 1: Complexes with Transition Metal-Carbon s-bonds. Oxford Chemistry Primers (1994) ISBN: 0198557507

Manfred Bochmann "Organometallics 2: Complexes with Transition Metal-Carbon π bonds" Oxford Chemistry Primers (1994) ISBN: 0198558139

Robin Whyman "Applied Organometallic Chemistry and Catalysis" Oxford Chemistry Primers (2001). ISBN 0198559178

Robert H. Crabtree "The Organometallic Chemistry of the Transition Metals" WILEY (2019). ISBN: 1119465885 A J Elias, B D Gupta "Basic Organometallic Chemistry: Concepts, Syntheses and Applications" Orient Black Swan (2013). ISBN: 9788173718748

A.R. West. "Solid State Chemistry and its Applications". 2nd Edition. Wiley 2014

L. E. Smart, E. A. Moore "Solid State Chemistry: an Introduction". 4thEdition. CRC Press 2012

2. Bibliografía complementaria

Ninguna

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

Las estrategias metodológicas y el sistema de evaluación contempladas en esta Guía Docente serán adaptadas de acuerdo a las necesidades presentadas por estudiantes con discapacidad y necesidades educativas especiales en los casos que se requieran.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA