DENOMINACIÓN DE LA ASIGNATURA

Denominación: SINTESIS Y APLICACIONES DE NANOMATERIALES INORGÁNICOS

Código: 637029

Plan de estudios: MÁSTER UNIVERSITARIO EN ELECTROQUÍMICA. CIENCIA Y Curso: 1

TECNOLOGÍA.

Créditos ECTS: 4.0 Horas de trabajo presencial: 30

Porcentaje de presencialidad: 30.0% Horas de trabajo no presencial: 70

Plataforma virtual: https://moodle.uco.es/

DATOS DEL PROFESORADO

Nombre: SANCHEZ GRANADOS, LUIS RAFAEL (Coordinador)
Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

Área: QUÍMICA INORGÁNICA

Ubicación del despacho: Campus Rabanales, Edif. Marie Curie - 1ª planta

E-Mail: iq2sagrl@uco.es Teléfono: 957 218634

URL web: https://moodle.uco.es

Nombre: FERNANDEZ RODRIGUEZ, JOSE MARIA

Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

Área: QUÍMICA INORGÁNICA

Ubicación del despacho: Edif. C3 (1ª planta) Campus de Rabanales / BELMEZ. 3ª PLANTA E-Mail: um1feroj@uco.es Teléfono: 957218648

URL web: https://moodle.uco.es

Nombre: SÁNCHEZ MORENO, MARÍA MERCEDES

Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

Área: QUÍMICA INORGÁNICA Ubicación del despacho: .

E-Mail: msmoreno@uco.es Teléfono: .

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno

Recomendaciones

Ninguna especificada

COMPETENCIAS

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

OBJETIVOS

El objetivo principal de esta asignatura es que el estudiante domine las principales técnicas de síntesis de nanomateriales inorgánicos, así como sus aplicaciones significativas en las áreas de energía y remediación medioambiental. Al final del estudio de esta asignatura, el estudiante deberá:

- Ser capaz de proponer procesos de sintesis de nanomateriales inorgánicos de diferente morfología usando diferentes técnicas y métodos avanzados.
- Comprender la influencia del carácter nanométrico de los materiales en sus propiedades.
- Ser capaz de analizar e interpretar diversos ensayos químicos, fotoquímicos y electroquímicos.
- Conocer el uso de nanomateriales inorgánicos para aplicaciones energéticas.
- Conocer las aplicaciones industriales de los nanomateriales: uso en pinturas, textiles, construcción, ...
- Conocer las aplicaciones industriales de los nanomateriales para la captura y eliminación de contaminantes:uso en eliminacion de contaminantes en aire, contaminantes emergentes, pesticidas y metales pesados.
- Conocer las aplicaciones industriales de los nanomateriales: uso en captura de CO2 y su aplicación en materiales de construcción

CONTENIDOS

1. Contenidos teóricos

Los temas que desarrolla la asignatura versarán sobre:

- El estudio de las principales técnicas de síntesis de nanomateriales inorgánicos, haciendo hincapié en las diferentes metodologías y procesos que permiten un control, crecimiento y modificación de los nanocristales. Entre otros, se estudiarán los procesos sol-gel, métodos solvotermal e hidrotermal, síntesis dirigidas por agentes químicos, métodos pirolíticos, métodos físicos y electroquímicos, etc.
- El estudio de las principales aplicaciones de los nanomateriales inorgánicos en el ámbito de la energía, y su aplicación en mejora de la eficiencia energética.
- Estudio de las aplicaciones de los nanomateriales en distintas industrias: textil, pinturas, construcción
- El estudio de las principales aplicaciones de los nanomateriales inorgánicos en el ámbito de la remediación y sostenibilidad medioambiental: la fotoquímica aplicada a la descontaminación de aire y agua, la captura de CO2 y su aplicacion en materiales de construcción, los procesos de adsorción para la descontaminación de suelos y medios acuosos (eliminación de contaminantes emergentes, pesticidas y metales pesados).

2. Contenidos prácticos

Se realizarán sencillos ejercicios exprimentales de síntesis de nanopartículas inorgánicas, su caracterización y ejemplo de aplicación.

OBJETIVOS DE DESARROLLO SOSTENIBLE RELACIONADOS CON LOS CONTENIDOS

Educación de calidad Energía asequible y no contaminante Ciudades y comunidades sostenibles Acción por el clima

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

METODOLOGÍA

Actividades presenciales

Actividad	Total
Laboratorio	4
Lección magistral	16
Seminario	10
Total horas:	30

Actividades no presenciales

Actividad	Total
Búsqueda de información	10
Consultas bibliográficas	10
Ejercicios	10
Estudio	40
Total horas:	7 0

MATERIAL DE TRABAJO PARA EL ALUMNO

Cuaderno de Prácticas - https://moodle.uco.es Presentaciones PowerPoint - https://moodle.uco.es Referencias Bibliográficas - https://moodle.uco.es

EVALUACIÓN

Instrumentos	Porcentaje
Informes/memorias de prácticas	15%
Pruebas de respuesta larga (desarrollo)	50%
Trabajos y proyectos	35%

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA

Periodo de validez de las calificaciones parciales:

Curso academico actual

Aclaraciones:

BIBLIOGRAFIA

1. Bibliografía básica

- "Nanochemistry. A chemical approach to nanomaterials", G Ozin, A Arsenault; RSC Publishing, 2005 J.
- Balbuena, M. Cruz-Yusta, and L. Sánchez. "Nanomaterials to Combat NOx Pollution". Journal of Nanoscience and Nanotechnology Vol. 15, 6373-6385, 2015.
- X. Cai, Y. Luo, B. Liu and H-M. Cheng, "Preparation of 2D material dispersions and their applications" Chem. Soc. Rev., 47 (2018) 6224 -6266.
- D. Wang, G. Cao, "Nanomaterials for Energy Conversion and Storage". Ed. World Scientific. ISSN: 1786343622. 2017
- A. Rafiee, K.R. Khalilpour, D. Milani and M. Panahi, "Trends in CO2 conversion and utilization: A review from process systems perspective", Journal of Environmental Chemical Engineering 6, 2018, 5771-5794.
- L.A. Kolahalam et al. Review on nano materials: Synthesis and applications. Materials Today: Proceedings 18 (2019) 2182-2190.
- A. Singh, N. B. . "Properties of cement and concrete in presence of nanomaterials". Smart Nanoconcretes and Cement Based Materials, Ed. Elsevier, (2020) 9-39
- Bui et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5) (2018) 1062-1176.
- Rives, V., 2001. Layered Double Hydroxides: Present and Future. Nova Science Publishers, Inc., New York.

2. Bibliografía complementaria

Ninguna

Las estrategias metodológicas y el sistema de evaluación contempladas en esta Guía Docente serán adaptadas de acuerdo a las necesidades presentadas por estudiantes con discapacidad y necesidades educativas especiales en los casos que se requieran.

www.uco.es facebook.com/universidadcordoba @univcordoba INFORMACIÓN SOBRE TITULACIONES DE LA UNIVERSIDAD DE CÓRDOBA