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Introduction 
 Search Based Software Engineering 

Search Based 
Software 
Engineering 

Search Based 
Software Design 

Architecture 
Discovery 

 Evolutionary methods in software design 

 Efficient exploration of design alternatives 

 Multi-objective search 

 

 Software architectures 

 Important design artefacts in the early software conception 

 Identification of functional blocks and their interactions 
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Introduction 
Multi-objective evolutionary discovery of architectures 

RQ: How can local search 

be effectively integrated in 

the multi-objective 

evolutionary discovery of 

software architectures? 

NSGA-II 

Component  

diagrams 

encoded as 

trees 

Four objective 

functions: design 

metrics 

The mutation 

performs 5 

architectural 

transformations 

Closer to human-

designed 

architectures 

We want to automatically identify the component-based architecture of  a 

system from its analysis model (represented as a class diagram) 
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 Local search techniques 

a. Hill climbing (HC) 

b. Simulated annealing (SA) 

c. Tabu search (TS) 

Introduction 
Multi-objective memetic algorithms 

Evolutionary 
algorithm (MOEA) 

Local search 
(LS) 

Memetic algorithm 
(MOMA) 
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Local search 

• Neighbourhood 

• Algorithm 

• Comparison criterion 

Evolutionary search 

• Selection of solutions 

• Step of the search 

• Number of evaluations 



Proposed MOMAs 
Local search procedure 

 Exploration of the neighbourhood: 

 A random class is reallocated 

 HC/SA: 1 neighbour/iteration 

 TS: 5 neighbours/iteration 

Initial solution 

Neighbour solution 
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 Comparison criterion: 

 Dominance (D) 

 Weights (We) 

 Best objective (B) 

 Worst objective (Wo) 



Proposed MOMAs 
MOEA(LS) and MOEA+LS 

MOEA(LS) : LS as a genetic operator 

Yes No 

Yes 

No 

Create  
population 

Select parents 
(NSGA-II) 

Mutate  
individuals 

Calculate 
 iterations 

Apply local  
search 

Replace population 
(NSGA-II) 

rnd(0,1) <  

ProbLS 

nEvals < 

maxEvals 

Extract non-
dominated 
solutions 

Parameters: 

a. Iterations: [10, 50] 

b. LS probability: 0.01, 

0.05, 0.1, 0.2, 0.8, 0.9, 

0.95,  0.99, 1.0 

MOEA+LS: LS as post-processing 

Parameters: 

a. Iterations: 50, 100, 200 

b. Solutions (%): 10, 15, 20 [7/10] 

Set iterations  
for MOEA/LS 

Evolve population 
(NSGA-II) 

Apply local  
search 

Extract non-
dominated solutions 

Extract non-
dominated 
solutions 

Apply clustering 
(kMeans++) 

|PF| < 

nSol 

Yes 

No 



Experiments and results 
Analysis of quality indicators 
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24 (+1) algorithms: 
MOEA(LS) | MOEA+LS 

HC  | SA | TS 

D | We | B | Wo 

Common 
configuration: 
150 individuals 

24000 evaluations 

6 design problems 

30 random seeds 

 Two Set Coverage 

 TSC = 0 for all comparisons between NSGA-II and MOMA 

 Local search does not decrease the efficiency of NSGA-II 

 Spacing 

 Percentage of improvement 

 Few iterations of LS 

 HC/SA vs. TS 

 Different behaviours in MOEA+LS 

 

 Effect size (Cliff’s Delta test) 

 Influence of the problem instance 

 MOEA+LS with HC/SA and weights 



Experiments and results 
Influence on the Pareto Front 
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 The number of solutions is similar 

 Only a small decrease in two problem instances with MOEA+LS 

 Generation of new 

non-dominated 

solutions 

 MOEA(LS): 

 HC > 3% 

 Methods D and We 

 MOEA+LS: 

 Low percentages 

 Weights are effective 



 From the experimental outcomes: 

 Local search can enhance the diversity of solutions 

 Influence of the comparison criterion and algorithm 

 Differences among problem instances 

 

 Future work 

 Domain knowledge to guide the generation of neighbours 

 Scalability in a many-objective space 

Concluding remarks 
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