
Interactivity in the generation of test 
cases with evolutionary computation

Aurora Ramírez (Univ. Córdoba, Spain)

Pedro Delgado-Pérez (Univ. Cádiz, Spain)

Kevin J. Valle-Gómez (Univ. Cádiz, Spain)

Inmaculada Medina-Bulo (Univ. Cádiz, Spain)

José Raúl Romero (Univ. Córdoba, Spain)



Outline

1. Introduction and problem analysis

• Motivation

• Requirements

2. Interactive optimization for the test generation problem

3.A proof of concept

• Interactive options in EvoSuite

• Illustrative example

4.Conclusions and future work

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021[1/11]



Introduction and problem analysis
Motivation

Automated test case/suite generation
• Efficient alternative to a costly manual process

• Frequently solved with fully automated evolutionary algorithms (SBST)

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

Two main limitations remain:

Fault-detection 
effectiveness

Is coverage-based fitness enough?

Are realistic faults detected?

Lack of readability

Can the tester understand the code?

Is test code human-like written?

[2/11]



Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

Putting the 

tester "in 
the loop"

Introduction and problem analysis
Requirements

Requirement 1:

White-box testing requires a broad knowledge of the source code

of the classes under test.

Requirement 2:

Testers should be able to incorporate their knowledge and preferences

to the test generation process.

Requirement 3:

Search-based test generation tools should be able to 

cope with two limitations: detection power and readability.

[3/11]



Interactive optimization for the test generation problem

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

Type of human

actions

▪ Evaluation

▪ Modification

▪ Selection

• Scores for detection capability / readability

• Reward/penalize test code sequences

• Weight objectives (multi-objective approach)

• Edit arguments in method calls

• Add complex objects or data structures

• Specify methods that should be combined

• Add complex assertions

• Choose the best solution among those detecting the same mutant

• Choose the best solution according to its readability

Oriented to readability improvement (subjective)

Oriented to better fault-detection capability
Type of interactive

algorithm

• Human-based evaluation

• Human-guided search

A. Ramírez, J.R. Romero, C. Simons. A Systematic Review of Interaction in Search-Based Software Engineering. 
IEEE Trans. Software Engineering, 45(8):760-781. 2019.

[4/11]



Interactive optimization for the test generation problem

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

Interaction

mechanism

▪ Time and 

frequency

▪ Solution 

selection

▪ Level of 

detail

• Adaptive: n trials without improvement, coverage threshold, detected mutant

• Fixed: every n iterations

• On demand: the tester pauses the search

• Best solution(s) according to the fitness value

• All solutions detecting the same target mutant

• Specific criterion, e.g., number of detected mutants

• Complete solution

• Test case together with the lines affected by the mutation

Feedback 

integration

▪ Information 

lifetime

▪ Information 

validity

• Mutation-based: applied to a test case – mutant pair

• Short-term: evaluation and modifications are transferred to other solutions

• Long-term: tester's preferences are saved for other executions

• Permanent: tester's feedback remains unaltered

• Flexible: tester's feedback can be revisited

[5/11]

A. Ramírez, J.R. Romero, C. Simons. A Systematic Review of Interaction in Search-Based Software Engineering. 
IEEE Trans. Software Engineering, 45(8):760-781. 2019.



A proof of concept
Interactive options in EvoSuite

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

Minimization

and clustering

Integrate 

readability

Interactions happen when:

1. Best coverage > threshold (1st)

2. Every N generations (after 1st)

3. Max. Num. Interactions not reached

Test suite

selectionYes

Sort

population

Interaction

moment?

No
New 

generation

Interaction to break ties: choose the 

solutions with best fitness.

Apply EvoSuite minimization procedure

and keep different test suites only.

Save the candidate test suites for 

subjective evaluation.

Assign tester's readability score as 
secondary objective.

[6/11]

Tester

Save

solutions



(1) Search until
first interaction

When the coverage of the best candidate is greater or equal to Revise_after_percentage_of_coverage (88%), 

the secondary objective is enabled (15th generation).

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

A proof of concept
Illustrative example

SUT: ATM class (EvoSuite tutorial)

https://www.uco.es/SEBASENet/CEC2021

[7/11]

https://www.uco.es/SEBASENet/CEC2021


Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

A proof of concept
Illustrative example

(2) Selection of 
candidate solutions

26/30 candidate test suites have the same (best) fitness value, but only 3 will be presented to 

the tester for revision (Percentage_to_revise=10%)

[8/11]



Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

(3) Minimization
(4) Tester's evaluation

A proof of concept
Illustrative example

Only the different test suites after minimization are evaluated (2/3)

[9/11]

7 test cases, 
readability=6

6 test cases,
readability=8

Tester



Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

(5) Integrate feedback
(6) Search continues...

A proof of concept
Illustrative example

Readability scores are assigned to the test suites, 

and the population is sorted

New interactions might be required in next generations 

(Revise_frequency=10, Max_times_sort=3)

[10/11]



Conclusions and future work

Special Session: Metaheuristics and Machine Learning in Software Engineering 
IEEE CEC 2021

✓Complete definition of interactive options for the test generation problem

✓Design of an interactive algorithm to improve readability of test suites

✓A running example using EvoSuite with parameters to control the interaction

❖More experiments (SUT, parameters), including studies with testers

❖ Implementation of interaction options oriented to fault-detection

❖ Other test generation problems (GUI, integration testing)

[11/11]



Interactivity in the generation of test 
cases with evolutionary computation

Aurora Ramírez (aramirez@uco.es)

Pedro Delgado-Pérez (pedro.delgado@uca.es)

Kevin J. Valle-Gómez (kevin.valle@uca.es)

Inmaculada Medina-Bulo (inmaculada.medina@uca.es)

José Raúl Romero (jrromero@uco.es)


