

Memetic Algorithms for the Automatic Discovery of Software Architectures

<u>Aurora Ramírez</u>, Rafael Barbudo, José Raúl Romero, Sebastián Ventura

Dept. Computer Science and Numerical Analysis
University of Córdoba, Spain

16th Int. Conf. on Intelligent Systems Design and Applications (ISDA)

December 14-15, 2016 – Porto (Portugal)

Contents

1. Introduction

2. Proposed memetic algorithms

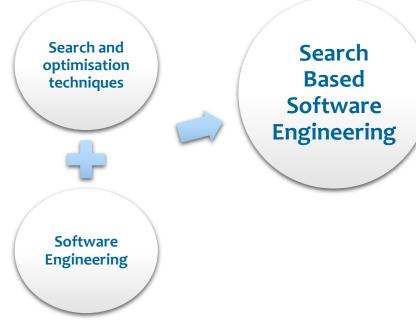
- Local search as genetic operator
- Local search as post-processing

3. Experiments and results

- Performance of local search
- Improvement on software metrics

4. Concluding remarks

Introduction


Search Based Software Engineering

- Search Based Software Engineering (SBSE)
 - Applying metaheuristics to solve Software Engineering tasks
 - Requirements prioritisation, generation of test cases...
- More specifically... SBSD
 - Automatic exploration of design alternatives
 - SBSE as a supporting mechanism for software architects

Search Based Software Engineering

Search Based Software Design

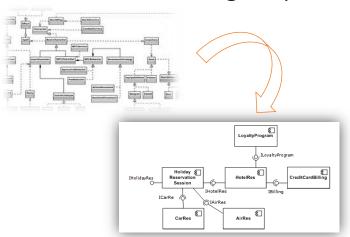
Architecture Discovery

Introduction

Evolutionary discovery of architectures

We want to automatically identify the component-based architecture of a system from its analysis model (represented as a class diagram)

A flexible and comprehensive tree encoding


A fitness function based on rankings of design metrics

EA

A mutation operator able to perform 5 architectural transformations

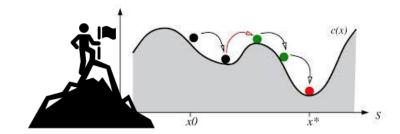
An adaptive mechanism to deal with constraints

Metric	Formula
ICD: Intra-modular	$ICD_i = ((\#cl_t - \#cl_i)/\#cl_t) \cdot (CI_i^{in}/(CI_i^{in} + CI_i^{out}))$
Coupling Density	$ICD = \sum_{i=1}^{n} ICD_i/n$
ERP: External	$ERP = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (w_{as} \cdot n_{as_{ij}} + w_{ag} \cdot n_{ag_{ij}})$
Relations Penalty	$+w_{co} \cdot n_{co_{ij}} + w_{ge} \cdot n_{ge_{ij}})$
CS: Critical size	$CS = \sum_{i=1}^{n} CC_i$, $CC_i = 1$ if $\#cl_i > threshold$, 0 otherwise
CB: Component	$SB(n) = \frac{n-\gamma}{\mu-\gamma} \text{ if } n < \mu \text{ , } = 1 - \frac{n-\mu}{\omega-\mu} \text{ if } \mu < n < \omega \text{ , } = 0 \text{ if } n \ge \omega$
Balance	$CSU(n) = 1 - Gini(\{\#cl_i \forall i \in [1, n]\}), CB = SB(n) \cdot CSU$

RQ: In which ways can local search enhance the evolutionary discovery of software architectures?

Introduction Memetic algorithms

Evolutionary algorithm (EA)

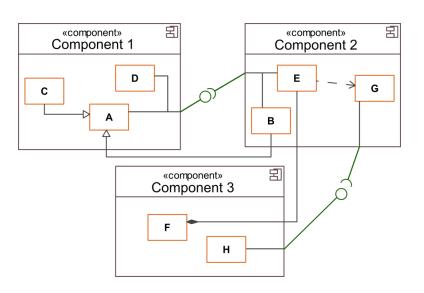


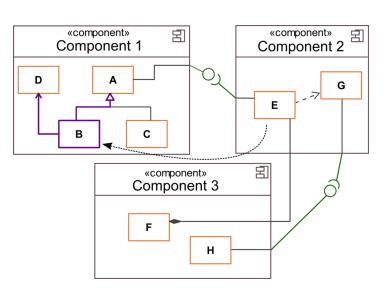
Local search (LS)

Memetic algorithm (MA)

- Local search techniques
 - a. Hill climbing (HC)
 - b. Simulated annealing (SA)

Design decisions:

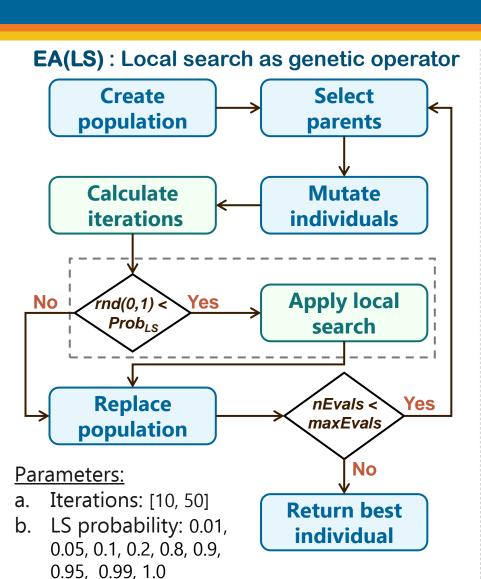

- 1. Trade-off between exploration and exploitation
- 2. Which LS algorithm is more effective?
- 3. When and how often should LS be applied?
- 4. Which solutions from the EA should be selected?



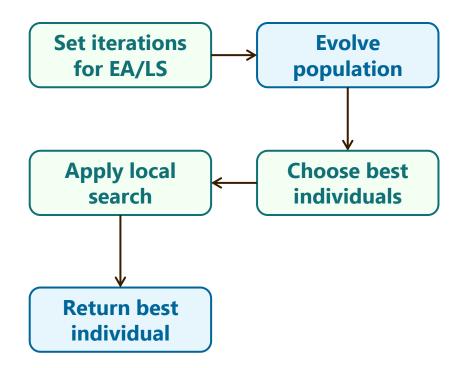
Proposed memetic algorithms

Local search procedure

- Goal: To explore the neighbourhood of a given solution
- Use of local search:
 - > 1 neighbour is generated by moving 1 class (random)
 - > The acceptance criterion considers the whole population



Initial solution


Neighbour solution

Proposed memetic algorithms

EA(LS) and EA+LS

EA+LS: Local search as post-processing

Parameters:

- a. Iterations: 50, 100, 200
- b. Solutions (%): 10, 15, 20

Experiments and results

Performance of local search

EA/LC)	Algorithm	% Satisfactory	Number of	Algorithm	% Satisfactory		Number of	E	A+LS	
EA(LS)	Aigorithin	movements	evaluations	Algorithm	movements		evaluations		ATL3	
	EA	-	23615.90 ± 732.20	EA	-		23615.90 ± 732.5	20)
_	EA(HC)_0.001	35.60 ± 3.20	23589.80 ± 663.80	EA+HC_10%_50	100.00 ± 0.00	П	23347.50 ± 55.9	0		
	EA(HC)_0.05	21.60 ± 2.90	23246.60 ± 1137.20	EA+HC_10%_100	100.00 ± 0.00	П	22598.40 ± 55.9	0		
	EA(HC)_0.10	21.30 ± 2.50	23067.20 ± 1473.70	EA+HC_10%_200	100.00 ± 0.00	П	21096.80 ± 56.9	0		
	EA(HC)_0.20	20.80 ± 2.90	22462.40 ± 2493.20	EA+HC_15%_50	100.00 ± 0.00	П	22945.50 = 29.6	0		
	EA(HC)_0.50	20.10 ± 2.80	22421.80 ± 2431.00	EA+HC_15%_100	100.00 ± 0.00	П	21883.30 ± 23.3	0		
	EA(HC)_0.80	19.50 ± 3.00	22284.00 ± 2813.70	EA+HC_15%_200	100.00 ± 0.00	П	19647.30 ± 30.2	0		
	EA(HC)_0.90	19.47 ± 3.00	22535.70 ± 2718.10	EA+HC_20%_50	100.00 ± 0.00	П	22598.40 ± 55.9	0		
	EA(HC)_0.95	19.50 ± 3.10	21960.60 ± 3038.00	EA+HC_20%_100	100.00 ± 0.00	П	21096.80 ± 56.9	0		
	EA(HC)_1.00	19.40 ± 3.00	22460.60 ± 2801.20	EA+HC_20%_200	100.00 ± 0.00	П	18099.00 ± 57.2	0		C
	$EA(SA-m)_0.001$	35.20 ± 3.00	23616.00 ± 677.30	EA+SA-m_10%_50	100.00 ± 0.00	П	23347.50 ± 55.9	0		<u>General</u>
	$\rm EA(SA\text{-}m)_0.05$	21.90 ± 2.70	23272.10 ± 1112.40	$EA+SA-m_10\%_100$	100.00 ± 0.00	П	22598.40 ± 55.9	0	,	<u>parameters:</u>
	$EA(SA-m)_0.10$	21.80 ± 2.80	23111.30 ± 1340.10	$EA+SA-m_10\%_200$	100.00 ± 0.00	П	21096.80 ± 56.9	0	15	0 individuals
	$EA(SA-m)_0.20$	22.00 ± 2.50	22699.50 ± 1897.40	EA+SA-m_15%_50	100.00 ± 0.00	П	22945.50 ± 29.6	0	24000	evaluations
	$EA(SA-m)_0.50$	26.50 ± 2.50	22617.00 ± 2070.60	EA+SA-m_15%_100	100.00 ± 0.00	П	21883.30 ± 23.3	0		
	$\rm EA(SA\text{-}m)_0.80$	32.90 ± 1.90	22545.50 ± 3958.00	$EA+SA-m_15\%_200$	100.00 ± 0.00	П	19647.30 ± 30.2	0		gn problems
	$EA(SA-m)_0.90$	34.80 ± 2.00	19079.10 ± 7452.80	EA+SA-m_20%_50	100.00 ± 0.00	П	22598.00 ± 55.9	0	30 exe	cutions/conf.
	$EA(SA-m)_0.95$	35.76 ± 2.00	19490.70 ± 6899.00	$EA+SA-m_20\%_100$	100.00 ± 0.00	П	21096.80 ± 56.9	0		
_	EA(SA-m)_1.00	36.70 ± 2.00	19876.60 ± 6845.10	$EA + SA - m_20\% _200$	100.00 ± 0.00	П	18099.00 ± 57.2	0		Local search
	EA(SA-l)_0.001	31.90 ± 3.00	23707.30 ± 587.50	EA+SA-l_10%_50	50.00 ± 1.80	П	23347.50 ± 55.9	0	•	techniques:
	$EA(SA-l)_0.05$	17.70 ± 2.00	23187.30 ± 1394.80	$EA+SA-l_10\%_100$	49.80 ± 1.20	П	$22598,40 \pm 55.9$	00		HC
	EA(SA-l)_0.10	16.90 ± 2.00	22877.00 ± 1557.80	$EA+SA-l_10\%_200$	49.90 ± 0.90	П	21096.80 ± 56.9	0	.	
	$EA(SA-l)_0.20$	16.70 ± 1.90	22803.50 ± 1663.90	EA+SA-l_15%_50	50.03 ± 1.40	П	22945.50 ± 29.6	0		etropolis (m)
	EA(SA-l)_0.50	18.70 ± 1.50	19013.50 ± 6477.00	EA+SA-l_15%_100	49.82 ± 1.10	П	21883.30 ± 23.3	0	SA	A+Logistic (l)
	EA(SA-l)_0.80	19.30 ± 1.70	14709.00 ± 7251.50	EA+SA-l_15%_200	49.93 ± 0.90		19647.30 ± 30.2	0		-
	EA(SA-l)_0.90	19.67 ± 1.70	14986.50 ± 7308.20	EA+SA-1_20%_50	49.90 ± 1.30		22598.40 ± 55.9	0		
	EA(SA-l)_0.95	19.60 ± 1.60	13019.30 ± 6787.90	EA+SA-1_20%_100	49.90 ± 0.90		21096.80 ± 56.9	0		[8/10]
_	EA(SA-l)_1.00	19.70 ± 1.60	15455.00 ± 7173.00	EA+SA-1_20%_200	50.00 ± 0.70		18099.00 <u>+</u> 57.2	0		

Experiments and results

Improvement on software metrics

EA(LS)

- ✓ Most important improvements: CB, CS
- ✓ Between 1% and 6%
- ✓ For all problem instances
- Problems to maintain the trade-off between metrics

EA+LS

- ✓ Improved metric: CB
- ★ Between 1% and 2%
- Mainly for the easiest problem instances
- Not a significant difference to the software architect

Concluding remarks

Experimental outcomes indicate that:

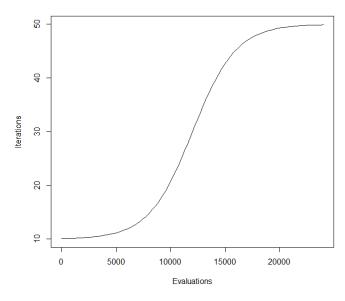
- Executing LS after the evolution is not effective
- Including LS within the evolution speeds up the optimisation
- Improvements mostly appear for those metrics controlling the size of the components
- The baseline algorithm maintains a better trade-off

Future work

- Domain knowledge to guide the generation of neighbours
- Application to a multi-objective problem formulation

Memetic Algorithms for the Automatic Discovery of Software Architectures

Thanks!


16th Int. Conf. on Intelligent Systems Design and Applications (ISDA)

December 14-15, 2016 – Porto (Portugal)

Experiments and results

Parameter study

10	LS techniques	HC, SA+Exp, SA+Log					
parameters	Initial temperature (SA)	Prob. worst individual = 50% in the initial state					
oara	Cooling factor (SA)	0.95					
ral	Max. Evaluations	24,000					
General	Population size	150					
	Problem instances	4 designs (32-59 classes)					
EA(LS)	LS probability	0.01, 0.05, 0.1, 0.2, 0.8, 0.9, 0.95, 0.99, 1.0					
	No. Iterations	Between MIN (10) and MAX (50)					
EA+LS	% Solutions	10%, 15%, 20%					
EA	No. Iterations	50, 100, 200					

$$nIterLS = \frac{MAX - MIN}{1 + e^{-k(\frac{nEvals - \max Evals}{2})}}$$