
Memetic Algorithms for the

Automatic Discovery

of Software Architectures

Aurora Ramírez, Rafael Barbudo,

José Raúl Romero, Sebastián Ventura

Dept. Computer Science and Numerical Analysis

University of Córdoba, Spain

16th Int. Conf. on Intelligent Systems Design and Applications (ISDA)

December 14-15, 2016 – Porto (Portugal)

Contents

1. Introduction

2. Proposed memetic algorithms

 Local search as genetic operator

 Local search as post-processing

3. Experiments and results

 Performance of local search

 Improvement on software metrics

4. Concluding remarks

[2/10]

Introduction
 Search Based Software Engineering

Search and
optimisation
techniques

Software
Engineering

Search
Based

Software
Engineering

Search Based
Software
Engineering

Search Based
Software Design

Architecture
Discovery

 Search Based Software

Engineering (SBSE)

 Applying metaheuristics to solve

Software Engineering tasks

 Requirements prioritisation,

generation of test cases...

 More specifically... SBSD

 Automatic exploration of design alternatives

 SBSE as a supporting mechanism for software architects

[3/10]

Introduction
Evolutionary discovery of architectures

RQ: In which ways can

local search enhance

the evolutionary
discovery of software

architectures?

A flexible and

comprehensive tree

encoding

A fitness function

based on rankings

of design metrics

A mutation operator

able to perform 5

architectural

transformations

An adaptive

mechanism to deal

with constraints

EA

We want to automatically identify the component-based architecture of a

system from its analysis model (represented as a class diagram)

[4/10]

 Local search techniques

a. Hill climbing (HC)

b. Simulated annealing (SA)

 Design decisions:

1. Trade-off between exploration and exploitation

2. Which LS algorithm is more effective?

3. When and how often should LS be applied?

4. Which solutions from the EA should be selected?

Introduction
Memetic algorithms

Evolutionary
algorithm (EA)

Local search
(LS)

Memetic
algorithm (MA)

[5/10]

Proposed memetic algorithms
Local search procedure

 Goal: To explore the neighbourhood of a given solution

 Use of local search:

 1 neighbour is generated by moving 1 class (random)

 The acceptance criterion considers the whole population

Initial solution Neighbour solution [6/10]

Proposed memetic algorithms
EA(LS) and EA+LS

Yes No

Yes

No

EA(LS) : Local search as genetic operator

Create
population

Select
parents

Mutate
individuals

Calculate
 iterations

Apply local
search

Replace
population

rnd(0,1) <

ProbLS

nEvals <

maxEvals

Return best
individual

Parameters:

a. Iterations: [10, 50]

b. LS probability: 0.01,

0.05, 0.1, 0.2, 0.8, 0.9,

0.95, 0.99, 1.0

EA+LS: Local search as post-processing

Set iterations
for EA/LS

Evolve
population

Choose best
individuals

Apply local
search

Return best
individual

Parameters:

a. Iterations: 50, 100, 200

b. Solutions (%): 10, 15, 20
[7/10]

Experiments and results
Performance of local search

EA(LS) EA+LS

[8/10]

General
parameters:

150 individuals

24000 evaluations

4 design problems

30 executions/conf.

Local search
techniques:

HC

SA+Metropolis (m)

SA+Logistic (l)

Experiments and results
Improvement on software metrics

EA(LS)

Most important
improvements: CB, CS

 Between 1% and 6%

 For all problem
instances

 Problems to maintain
the trade-off between
metrics

EA+LS

 Improved metric: CB

 Between 1% and 2%

 Mainly for the easiest
problem instances

 Not a significant
difference to the
software architect

[9/10]

 Experimental outcomes indicate that:

 Executing LS after the evolution is not effective

 Including LS within the evolution speeds up the optimisation

 Improvements mostly appear for those metrics controlling

the size of the components

 The baseline algorithm maintains a better trade-off

 Future work

 Domain knowledge to guide the generation of neighbours

 Application to a multi-objective problem formulation

Concluding remarks

[10/10]

Aurora Ramírez

Email. aramirez@uco.es

Web. http://www.uco.es/users/aramirez/en

Thanks!

Memetic Algorithms for the Automatic
Discovery of Software Architectures

16th Int. Conf. on Intelligent Systems Design and Applications (ISDA)

December 14-15, 2016 – Porto (Portugal)

Experiments and results
Parameter study

G
e
n

e
ra

l
p

a
ra

m
e
te

rs
 LS techniques HC, SA+Exp, SA+Log

Initial temperature (SA)
Prob. worst individual =

50% in the initial state

Cooling factor (SA) 0.95

Max. Evaluations 24,000

Population size 150

Problem instances 4 designs (32-59 classes)

E
A

(L
S

) LS probability
0.01, 0.05, 0.1, 0.2, 0.8,

0.9, 0.95, 0.99, 1.0

No. Iterations
Between MIN (10) and

MAX (50)

E
A

+
L

S

% Solutions 10%, 15%, 20%

No. Iterations 50, 100, 200

)(
2
max

1
EvalsnEvalsk

e

MINMAX
nIterLS

