

Interactive multi-objective evolutionary optimization of software architectures

Aurora Ramírez, José Raúl Romero, Sebastián Ventura

Dept. Computer Science and Numerical Analysis. University of Córdoba.

Track Ingeniería del software guiada por búsqueda Jornadas de Ingeniería de Software y Bases de Datos Cáceres, 4 de septiembre de 2019

Content

- 1. Introduction
- 2. Background
- 3. Interactive algorithm
- 4. Empirical study
- 5. Conclusions

A. Ramírez, J.R. Romero, S. Ventura. "Interactive multiobjective evolutionary optimization of software architectures". *Information Sciences*, vol. 463-464, pp. 92-109. 2018.

Introduction

- Software design is a human-centered task
- Qualitative aspects are difficult to quantify
- The engineer should be involved in the optimization process
- Sometimes it is easier to identify a bad solution rather than a good one

Introduction

RQ1: How can the qualitative judgement of the engineer be integrated into the evolutionary discovery of software architectures?

RQ2: Does putting the human in the loop involve a significant improvement compared with not considering him/her along the optimization process?

Background Architecture discovery

To identify the underlying **component-based architecture** of the system from the analysis information contained in a UML class diagram

Component: a cohesive group of classes that work together to satisfy the expected behavior of the component

Interface: a directed relationship between classes belonging to different components **Connector:** The linkage between required/provided interfaces

Background Interactive optimization

Full automation is not always realistic:

- Uncertainty scenarios
- Creative tasks

Human is "put in the loop":

- To provide problem knowledge
- To increase trust on automatic results
- To meet user's expectations

Design and implementation decisions:

- Selection of solutions
- Type of feedback
- Frequency of interaction
- Information lifetime

Any optimization method, including metaheuristics, in which the human **actively participates** in any step of the process to provide feedback

Interactive algorithm Overview

- Steady-state algorithm: two offspring are produced in each generation
- Archive to store a small set of representative solutions
- Binary tournament selection from population and archive
- Offspring replace population members with worst fitness

Interactive algorithm Fitness function

A novel **fitness function** that combines objective and subjective evaluation criteria

 $fitness(s) = w_{obj} \cdot f_{obj}(s) + w_{sub} \cdot f_{sub}(s)$

<u>Quantitative</u>: *Maximin* function to quantify both dominance and diversity (software measures)

$$f_{obj}(s) = \frac{1 + \max_{z \neq s}(\min_k(f_k^s - f_k^z))}{2} \quad \forall z \in \mathbb{Z}$$

Qualitative: Engineer's preferences on phenotypic aspects of the solution (architectural preferences)

$$f_{sub}(s) = 1 - \frac{1}{p} \cdot \sum_{p=1}^{p} w_p \cdot pref_p(s)$$

Interactive algorithm Architectural preferences

Preference	Description		
Best component	Similarity to the set of classes		
Worst component	Dissimilarity to the set of classes		
Best provided interface	Similarity to the set of operations		
Worst provided interface	Dissimiliraty to the set of operations		
Number of components	Distance to the preferred number		
Metric in range	Distance to the midrange		
Aspiration levels	Weighted distance to the reference point		

$$pref_{bc}(s) = max\{J(classes(c), classes(c^*))\} \quad \forall c \in [1, n]$$
$$J(A, B) = \frac{A \cap B}{A \cup B}$$

«component» 뮘 $\dot{\mathbf{C}}_2$ Е Α в F G С

 $J(C^*, C_1) = 3/4 = 0.75$

Interactive multi-objective evolutionary optimization of software architectures. ISGB@JISBD'19.

Interactive algorithm Interaction mechanism

- Interactions are scheduled at regular intervals
- Solutions are selected from the current population using a clustering method
- The engineer rewards or penalizes some aspect of the solution by choosing one preference
- Additional actions:
 - Freeze one component
 - > Add to the archive
 - Remove from the population
 - Stop the search

Empirical study

Methodology:

- Case study, 9 participants
- 3 interactions, 3 solutions each
- Log files and questionnaires

Impact of interaction:

- Cohesion is indirectly improved
- Different number of components
- Components are similar or equal to the manual design
- Actions (add, freeze) contribute to find better solutions

Empirical study

Analysis of architectural preferences:

- More interest in the internal structure
- Negative preferences are move frequently applied at the beginning
- Use of "no preference"

Architectural preference	Selected (%)	Useful [1-8]	Intuitive [1-8]
No preference	22.22	6.44	7.33
Best component	29,63	7.44	7.44
Worst component	23.46	7.22	7.33
Best prov. Interface	2.47	5.29	6.38
Worst prov. Interface	0.00	4.71	6.38
No. Components	17.28	7.50	7.33
Metric in range	2.47	4.17	5.44
Aspiration levels	2.47	5.80	5.22

Conclusions

Architectural preferences as a novel mechanism for subjective evaluation

- ✓ Design measures are still needed at the beginning
- ✓ Negative options are useful too
- Humans are willing to participate (even more) in the optimization

Future work:

- > Improve the interactive experience (more preferences and flexibility)
- > Analyze how other human design abilities could be integrated

Interactive multi-objective evolutionary optimization of software architectures

Aurora Ramírez, José Raúl Romero, Sebastián Ventura

Track Ingeniería del software guiada por búsqueda Jornadas de Ingeniería de Software y Bases de Datos Cáceres, 4 de septiembre de 2019

Interactive algorithm Problem representation and constraints

Architectural solutions (individuals) *are* **coded as multi-layered trees**

Initialization and constraints

- 1. Random distribution of classes
 - \checkmark No empty components and no replicated classes
- 2. Set interfaces and connectors
 - × Isolated or mutually dependant components

Phenotype

Interactive algorithm Architectural preferences

1) Best component

 $pref_{bc} = max\{J(classes(c), classes(c^+))\} \ \forall c \in [1, n]$

 $J(A,B) = |A \cap B| / |A \cup B|$

2) Worst component

 $pref_{wc} = max\{1 - J(classes(c), classes(c^{-}))\} \ \forall c \in [1, n]$

3) Best provided interface

 $pref_{bi} = max\{J(operations(interface(c)), operations(p^+))\} \ \forall c \in [1, n]$

4) Worst provided interface

 $pref_{wi} = max\{1 - J(operations(interface(c)), operations(p^{-}))\} \ \forall c \in [1, n]$

5) Number of components

$$pref_{nc} = \begin{cases} (n - n_{min})/(n^{+} - n_{min}) & \text{if } n < n^{+} \\ 1 - ((n - n^{+})/(n_{max} - n)) & \text{if } n \ge n^{+} \end{cases}$$

6) Metric in range $pref_{mr} = \begin{cases} 0 & \text{if } m^s < m_{min} \\ 1 - (m^s - m_{mid})/m_{mid} & \text{if } m^s \in [m_{min}, m_{max}] \\ 0 & \text{if } m^s > m_{max} \end{cases}$

 $m_{mid} = (m_{max} - m_{min})/2$

7) Aspiration levels

$$pref_{al} = \begin{cases} 1 & \text{if } ASF \leq 0\\ 1 - ASF & \text{if } ASF > 0 \end{cases}$$
$$ASF = max\{w_k \cdot (f_k^s - z_k^*)\}$$