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Introducing UCASE

UCASE http://ucase.uca.es
UCA Software Engineering Research Group

Founded in 2011 with a broad focus in Software Engineering

Head
Inmaculada Medina-Bulo (Inma)

Members
6 PhD

5 PhD candidates

7 / 11 members working on SBSE related areas
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SBSE Related Research Lines

High Quality Mutant Generation
Evolutionary Mutation Testing

GAmera http://ucase.uca.es/gamera

Testing of WS Compositions
WS-BPEL Test-Case Generation

Rodan http://ucase.uca.es/rodan

Requirements Engineering
Next Release Problem

OATSAC http://ucase.uca.es/nrp
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An industrial example: Motorola

Motorola identified 40 requirements for a new product
A small number of requirements were identified as mandatory

Any release of the product must include at least these
A fix amount of budget is devoted to this task

Decision-makers faced 35 independent requirements
Costs were estimated
Revenues were based in customer assessments

Which optional requirements to implement?

There are 235 possible choices

> 34000 million possibilities

> 1000 million possibilities with half the total cost as budget
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Formalisation

The Next Release Problem (NRP)
Several variants defined by Bagnall et al. in 2001

Simplest NRP is a classical knapsack problem
Maximising revenues under budget constrains

Budget is “known” a priori
Optimal solutions exist and may not be unique

The Knapsack Problem and the NRP
Knapsack problems first studied in the 1950s
Basic variants of these problems are well understood

Most variants are hard computational problems
Simplest NRP is hard, but “weaker” than other hard problems
Different algorithms have been devised
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Approximation algorithms

Guarantees
1 Different guarantees for errors depending on the algorithm

No guarantee
Relative error
Absolute error

2 Most heuristic methods are “no guarantee” algorithms
Local search
Genetic algorithms
Simulated annealing

Facts
1 Guaranteeing absolute error for NRP is as hard as exactness
2 Relative error approximation algorithms exist
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Sensitivity analysis

1 Estimation is not an exact science
2 Requirements are affected by estimation errors

Costs are invariably underestimated
Revenues are usually more predictable

3 Budgets are subjected to cuts (nowadays even more true)
4 Complex products go through different budgeting scenarios
5 Sensitivity analysis helps to identify the hot-spots

The Big Question
Q: How do you make sure that the observed variation stems from

inherent sensitivity and not from the optimisation algorithm
when you use an approximation algorithm?

A: You cannot!
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Sensitivity analysis of the Motorola data

1 21 perturbations (from -50% to +50% with 5% steps)
2 Positive perturbations show the effect of underestimations
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Challenges

Problem
1 Requirements are uncertain
2 Precise sensitivity analysis is key to decision making
3 Approximate solutions disable precise sensitivity analysis

Solution
Exact sensitivity analysis based on exact algorithms

Issues
1 Efficiency
2 Scalability
3 Interactions
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Exact algorithms

Facts
1 Many algorithms have been devised in the last 50 years
2 Advanced algorithms are difficult to implement and test
3 For many algorithms space can be as critical as time
4 The curse of computational complexity on the NRP

No matter how good our exact algorithms are, they will always
behave bad for an infinite number of instances, according to
the current state of our knowledge (i.e., as long as P 6=NP)

Approach
1 Focus in “simple” algorithms and data structures
2 Algorithms have to be efficient just for the application domain
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Dynamic programming algorithms

Bellman’s equation for KP

z(n,B)=


0 if n = 1∧c1 >B

r1 if n = 1∧c1 ≤B

z(n−1,B) if n > 1∧cn >B

max{z(n−1,B),z(n−1,B−cn)+ rn} if n > 1∧cn ≤B

Nemhauser-Ullmann’s algorithm (NU)
1 As values of z are computed, they are saved for later reuse
2 Solution is recovered from the values of z previously saved
3 In 2003, Beier and Vöcking proved very interesting properties

NU solves a random KP in expected polynomial time
This is so under quite general conditions
Strongly correlated instances are provably harder for NU
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Correlation

1 Highly-correlated instances are reported hard in the literature
2 We control Pearson’s correlation during instance generation
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Scalability experiments

1 50 different datasets with 315 NRP random instances each
15 problem sizes from 100 to 1500, with steps of 100
21 correlation degrees from 0% to 100%, every 5%

2 Significant # of experiments: 15 750 instances solved
3 Experiments performed in just one core of a 1000 £ machine

Intel Core i7 2.67 GHz CPU with 12 GiB RAM
C++ on GNU/Linux

4 Results show that a polynomial model explains well our times
NU behaves polynomially in the number of requirements
Except when costs and revenues are very highly correlated

Assumptions
1 High correlations between cost and revenue are uncommon
2 This is particularly true in the case of optional requirements
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Interactions

One at a time
Requirements are perturbed in isolation

No interactions are taken into account

k at a time
At most k simultaneous perturbations are considered

Interactions are taken into account

Very expensive

F. Palomo-Lozano (UCA) Exact Scalable SA for the NRP JISBD 2015 14 / 18



Trade-off

Second order interactions
No interactions for a first analysis

Interactions between pairs of requirements are then regarded
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Conclusions

1 Exact algorithms enable precise sensitivity analysis (PSA)
Necessary to isolate estimation from approximation errors
Approximation errors may trick the decision-maker

2 Scalability is achievable, at least for reasonable cases
3 PSA is still expensive

21 perturbations (from -50% to +50% with 5% steps)
21 ·n instances for a single budget

However, we can complete a PSA without interactions for a
project with 500 requirements in less than one day per budget
scenario with just one core of a desktop computer
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Future work

Parallelisation
Different budgets can be analysed at the same time

As well as different cost perturbations when a budget is fixed

SBSE for higher-order interactions
SBSE could be used to look for higher-order interactions

Especially to chase particularly insidious interactions

NU would be used on demand to assess suspicious scenarios

Exact multi-objective NRP
Maximising revenues while minimising costs

Costs and revenues are conflicting objectives

Pareto-optimal solutions instead of absolute, optimal solutions
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Thank you for your attention
francisco.palomo@uca.es

Get more!

M. Harman, J. Krinke, I. Medina, F. Palomo, J. Ren, and S. Yoo.

Exact scalable sensitivity analysis for the Next Release Problem.

ACM Trans. Softw. Eng. Methodol., 23(2):19:1–31, 2014.

Source code and experimental data freely available at:
– http://ucase.uca.es/nrp

Open access to the journal paper at:
– http://dl.acm.org/citation.cfm?id=2537853
– http://dx.doi.org/10.1145/2537853
– http://discovery.ucl.ac.uk/1428945
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