

FACULTAD DE VETERINARIA GRADO DE CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS Curso 2016/17 Asignatura: REACTORES BIOLÓGICOS

DATOS DE LA ASIGNATURA

Denominación: REACTORES BIOLÓGICOS

Código: 102257

Plan de estudios: GRADO DE CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS Curso: 4

Denominación del módulo al que pertenece: OPTATIVIDAD / RECONOCIMIENTO

Materia: OPTATIVIDAD

Carácter: OPTATIVA Duración: Cuatrimestral

Créditos ECTS: 3 Horas de trabajo presencial: 30 Porcentaje de presencialidad: 40% Horas de trabajo no presencial: 45

Plataforma virtual: Moodle

DATOS DEL PROFESORADO

Nombre: GARCIA GARCIA, ISIDORO (Coordinador/a)

Centro: Facultad de Ciencias

Departamento: QUÍMICA INORGÁNICA E INGENIERÍA QUÍMICA

área: INGENIERÍA QUÍMICA

Ubicación del despacho: Edificio Marie Curie, planta baja

E-Mail: iq1gagai@uco.es Teléfono: 951218589

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS Y RECOMENDACIONES

Requisitos previos establecidos en el plan de estudios

Ninguno.

Recomendaciones

Se recomienda haber cursado la asignatura: Fermentaciones Industriales

COMPETENCIAS

CB2	Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vacación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y resolución de problemas dentro de su área de estudi.
CB5	Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
CE1	Reconocer y aplicar los fundamentos físicos, químicos, bioquímicos, biológicos, fisiológicos, matemáticos y estadísticos necesarios para la comprensión y el desarrollo de la Ciencia y Tecnología de los alimentos.
CE16	Poner en práctica los principios y metodologías que definen el perfil profesional del científico y tecnólogo de los alimentos, demostrando de forma integrada la adquisición de las destrezas y competencias que contempla el

grado.

CE4 Reconocer y aplicar las principales operaciones básicas de los procesos industriales para garantizar el control o

Reconocer y aplicar las principales operaciones básicas de los procesos industriales para garantizar el control de procesos y de productos alimentarios destinados al consumo humano.

Ceó
 Conocer, comprender y aplicar la metodología clásica y los nuevos procesos tecnológicos destinados a la mejora en la producción y tratamiento de los alimentos.
 CT2
 Capacidad de resolver problemas.
 CT4
 Capacidad de aplicar los conocimientos teóricos a la práctica.
 CT7
 Capacidad de análisis y síntesis.
 CU2
 Conocer y perfeccionar el nivel de usuario en el ámbito de las TIC.

OBJETIVOS

Los procesos de muchas industrias alimentarias incluyen operaciones de biotransformación llevadas a cabo por microorganismos. El diseño y funcionamiento de los reactores biológicos, o fermentadores, en los que se realizan estas operaciones, suelen ser algunos de los factores más importantes que pueden afectar al resultado global del proceso. Por ello, con esta asignatura se pretende:

- Comprender la importancia de los biorreactores en este tipo de industrias.
- Conocer los tipos de fermentadores más habituales.
- Realizar una introduccíon al estudio de los aspectos cuantitativos necesarios para abordar el diseño y análisis de un biorreactor.

CONTENIDOS

1. Contenidos teóricos

- Tema 1.- Biorreactores e industrias alimentarias.
- Tema 2.- Tipos de biorreactores.
- Tema 3.- Diseño y modelado.
- Tema 4.- Cinética microbiana.
- Tema 5.- Modelos para procesos de fermentación.
- Tema 6.- Ejemplo de proceso discontinuo.
- Tema 7.- Ejemplo de proceso semicontinuo.

2. Contenidos prácticos

- Resolución de problemas numéricos.
- Seminarios de casos prácticos.

METODOLOGÍA

Adaptaciones metodológicas para alumnado a tiempo parcial

Las que establezca la Facultad

Actividades presenciales

Actividad	Grupo completo	Grupo mediano	Total
Actividades de evaluación	3	-	3
Lección magistral	15	-	15
Seminario	-	10	10
Tutorías	-	2	2
Total horas:	18	12	30

Actividades no presenciales

Actividad	Total
Búsqueda de información	5
Cuestionarios en Moodle	5
Estudio	20
Problemas	15
Total horas:	45

MATERIAL DE TRABAJO PARA EL ALUMNADO

Cuestionarios en Moodle Dossier de documentación Ejercicios y problemas

EVALUACIÓN

	Instrumentos			
Competencias	Pruebas de respuesta corta	Resolución de problemas	Cuestionarios en moodle	
CB2	х	х		
CB5	х	х	х	
CE1	х	х		
CE16	х	х		
CE4	х	х		
CE6	х			
CT2		х		
CT4		х		
CT7		х		
CU2		Х		
Total (100%) 40%		50%	10%	
Nota mínima.(*)	3	3	2	

^(*) Nota mínima para aprobar la asignatura.

Valora la asistencia en la calificación final: No

Aclaraciones generales sobre los instrumentos de evaluación:

Para las pruebas de respuesta corta y de resolución de problemas se podrán emplear apuntes, libros y cualquier

otro material impreso en papel. No se permitirá el empleo de medios electrónicos que hagan posible la comunición con otras personas.

Aclaraciones de evaluación para el alumnado a tiempo parcial:

A los alumnos a tiempo parcial se les facilitará el seguimiento de las actividades programadas, en la medida de lo posible y siempre que sea compatible su disponiblidad en el tiempo. Para los alumnos discapacitados se estará a lo dispuesto por Consejo de Gobierno de la Universidad de Córdoba.

Criterios de calificación para la obtención de Matrícula de Honor: Nota media claramente superior a 9

¿Hay examenes/pruebas parciales?: No

BIBLIOGRAFÍA

1. Bibliografía básica:

BASIC BIOTECHNOLOGY. J. Bu'lock & B. Kristiansen. Academic Press Inc. London. 1987

INGENIERÍA BIOQUÍMICA. F. Gòdia Casablancas y J. López Santín. Editorial Síntesis. 1998.

INGENIERÍA DE BIOPROCESOS. Mario Díaz. Ediciones Paraninfo. 2012.

BIOPROCESS ENGINEERING PRINCIPLES. P.A. Doran. Academic Press. (London), 1995

2. Bibliografía complementaria:

Ninguno.

CRITERIOS DE COORDINACIÓN

- Realización de actividades

CRONOGRAMA

	Actividad				
Periodo	Actividades de evaluación	Lección magistral	Seminario	Tutorías	
1 ^a Semana	0	2	0	0	
2 ^a Semana	0	2	0	0	
3 ^a Semana	0	2	0	0	
4 ^a Semana	0	2	0	0	
5 ^a Semana	0	2	0	0	
6 ^a Semana	0	2	0	0	
7 ª Semana	0	2	0	0	
8 ^a Semana	0	1	0	0	
9 ^a Semana	0	0	2	0	
10 ^a Semana	0	0	2	0	
11 ^a Semana	0	0	2	0	
12 ^a Semana	0	0	2	0	
13 ^a Semana	0	0	2	0	
14 ^a Semana	0	0	0	2	
15 ^a Semana	3	0	0	0	
Total horas:	3	15	10	2	