

# **COURSE NAME**

Name: MATHEMATICS I

Code: 101120 Curriculum: **DEGREE IN CIVIL ENGINEERING** Name of the module to which it belongs: BASIC TRAINING MODULE Subject: MATHEMATICS Nature: BASIC Duration: FIRST SEMESTER ECTS Credits: 6 Face-to-face classroom percentage: 40% Online platform: http://moodle.uco.es/

**FACULTY DETAILS** 

Name: RIOS LOPEZ, FCO. JAVIER DE LOS (Coordinator) Department: MATHEMATICS area: APPLIED MATHEMATICS Location of the office: EPS BÉLMEZ E-mail: um1rilof@uco.es

Phone number: 957213051

Classroom hours: 60

Non-contact hours: 90

Year: 1

# **SKILLS**

 CB4
 Solve problems within the study area of Civil Engineering.

 CEB1
 Ability for solving mathematical problems that may arise in Engineering. Skills for applying knowledge on: linear algebra, geometry, numerical methods, numerical algorithms, statistics and optimisation.

# **OBJECTIVES**

Students should be able to:

- 1. Operate with vectors, bases, subspaces, matrices and linear applications. Manage elementary calculus in complex variable. Apply the use of matrices to calculus of different concepts. Calculate eigenvalues and eigenvectors.
- 2. Understand the positioning of linear varieties.
- 3. Understand conics and quadrics.
- 4. Understand and apply Linear programming for the optimisation of functions.
- 5. Synthetize and descriptively analyse data sets.

# **CONTENTS:**

# 1. Theoretical contents

# Block 1: Algebra and Geometry

# Unit 1. Matrices and Determinants.

Vectors, matrices and determinants: general concepts. Basic operations with matrices. Determinant of a matrix: definition and properties. Rank and inverse of a matrix.

# Unit 2. Linear equation systems.

Linear equation systems. Homogeneous systems. Rouché-Capelli theorem. Calculation of solutions: Cramer's rule and Gaussian elimination.



#### Unit 3. Vector spaces and linear transformations.

Vector spaces: definition and basic properties. Subspaces. Linear combination and generated space. Linear independence. Basis and dimension of vector spaces. Linear applications: definition. Properties of linear applications: image and nucleus. Linear applications and matrices. Composition of linear applications and matrix multiplication.

### Unit 4. Diagonalization of matrices.

Characteristic polynomial. Eigenvalues and Eigenvectors. Diagonalization of matrices.

#### Unit 5. Euclidean vector spaces.

Euclidean vector space. Scalar product. Vector norm. Distance and angle. Multiplication of vectors and mix product.

#### Unit 6. Euclidean geometry.

#### Unit 7. Conics and Quadrics.

Definition of conics. Classification of conics. Notable elements of conics. Definitions and classification of quadrics.

#### Unit 8. Complex numbers.

Construction of real numbers, due to algebraic needs. The body of complex numbers: specific case of en . Representation geometry of complex numbers. imaginary unit i. Absolute value of a complex number. Complex exponentials: properties. Polar form of a complex number. Integer powers and roots of complex numbers. de Moivre's formula.

### **Block 2: Optimisation**

#### Unit 9. Linear programming.

Historical introduction. The problem of linear programming: definitions and matrix expression. Convex groups. Geometrical solving of the problem of linear programming with two variables. Simplex Method.

#### **Block 3: Statistics and Probability**

#### Unit 10. Descriptive Statistics.

Definitions Data arrangement. Graphical representation of data. Measures of central trend. Dispersion measures. Asymmetry and kurtosis measures.

#### Unit 11. Bidimensional statistical variable.

Bidimensional statistical variable. Data arrangement. Graphical representation of data. Margin distributions. Conditional distributions. Moments.

### Unit 12. Regression and correlation.

Regression. Regression lines. Regression straight line. Regression coefficient. Correlation coefficient.

# Unit 13. Combinatorics.

# 2. Practical contents.

Solving exercises and problems related to theoretical contents.