

Membranes as meeting points for drugs, lipids and therapies

Salette Reis*, Marlene Lúcio, Cláudia Nunes, Marina Pinheiro and José L.F.C. Lima

REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Portugal.

Next year

Degrees in FFUP

- Mestrado Integrado em Ciências Farmacêuticas (300 ECTS)
- Mestrado em Análises Clínicas (120 ECTS)
- Mestrado em Controlo de Qualidade (120 ECTS)
- Mestrado em Tecnologia Farmacêutica (120 ECTS)
- Mestrado em Toxicologia Analítica Clínica e Forense (120 ECTS)
- <u>Doutoramento em Ciências Farmacêuticas</u> (240 ECTS)

REQUIMTE, is the largest network in Chemistry and Chemical Engineering established in Portugal and is recognized as the Laboratório Associado para a Química Verde by the Portuguese Ministério da Ciência e Tecnologia e do Ensino Superior since November 2001.

RESEARCH GROUPS AT REQUIMTE

Organic Chemistry

Chemical and Biochemical Engineering

Biochemistry and Biophysics

Analytical Chemistry

Food Chemistry

Physical and Inorganic Chemistry

Biological Chemistry

Our Research group

Salette Reis Marlene Lúcio

Lines of research

- 1- Liposomes as cell membrane mimetic models systems for the study of drugs
- Drugs for the treatment of tuberculosis

Marina Pinheiro;

Marta Oliveira;

Mariana Arêde

Nonsteroidal anti-inflammatory drugs

Cláudia Pinho;

Catarina Pinto Leite;

Daniela Lopes

Cardiovascular drugs

Cláudia Carneiro

Membrane toxicity studies

Juliana Brittes

Lines of research

- 2 Development of nanosystems for drugs delivery
- Silica nanotubes for the delivery of anti-inflammatory
 Cláudia Pinho
- Liposomes for the delivery of drugs for the treatment of tuberculosis

Marina Pinheiro

Lipid nanoparticles for the delivery of resveratrol

Ana Rentão; Rafael Amaral

Polymeric nanoparticles for drug delivery

Catarina Alves Natacha Rosa

Lines of research

- 3 Study of drug effect on enzymes activity at the lipid interface
- Studies with PLA2 and anti-inflammatory
 Ana Rute
- 4 Enzymes/drugs binding studies
- Binding studies of drugs to plasma proteins

Diogo Ribeiro; Ana Azevedo

Membranes as meeting points for drugs, lipids and therapies

Salette Reis*, Marlene Lúcio, Cláudia Nunes, Marina Pinheiro and José L.F.C. Lima

REQUIMTE, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Portugal.

Why is it important to study how drugs interact with membranes?

Drugs can act at the membrane level or must often pass across membranes before they can reach an intracellular target.

DRUG PENETRATION

Why is it important to study how drugs interact with membranes?

- 1. Drugs may interact with membrane proteins or receptors in the surface of the cell membrane producing their effect
- 2. Drugs may penetrate cell membrane to reach their intracellular target
- 3. Drugs may alter the cell membrane and change the activity of membrane enzymes/receptors

DRUG PENETRATION

Drug penetration into the lipid membrane can be evaluated by:

- 1. Determination of membrane/water partition coefficient (K_p);
- 2. Determination of **drug location** in the membrane

BIOPHYSICAL EFFECTS

The biophysical effects induced by the drugs in membranes can be evaluated by:

- 1. Membrane microviscosity and phase transition studies
- 2. Membrane **structure** and **order** studies

Aims of study

Understand membrane

4.

permeation Uembrane Charge

Drug-membrane interactions

Membrane
Develop drug-sics
delivery systems

Understand drugs

mode of action

Drug

location

Predict

drugs toxic

effects

Partition

coefficiento reach better
treatments

Why is it important to study how drugs interact with membranes?

Cell membranes are lipid bilayers composed by phospholipids and proteins

Drug - membrane interactions

Drug membrane concentration

Drug membrane location

Surface charge

Modifications of membrane structure and membrane biophysical properties

Enzymatic inhibition

membrane model systems

Monolayers

The case of NSAIDs

Drug - membrane interactions

Drug membrane concentration

Drug membrane location

Surface charge

Modifications of membrane structure and

Non-steroidal Anti-inflammatory Drugs (NSAID) are the most widely used medicines for the treatment of fever, pain and inflammation.

Membranes as meeting points for the action and toxicity of therapeutics

The case of NSAIDs

Drug - membrane interactions

Drug membrane concentration
Drug membrane location
Surface charge
Modifications of membrane structure and membrane biophysical properties

membrane model systems

Monolayers

Cell membrane

Enzymatic inhibition

Inflamated cell membrane

mitochondrial membrane (i.m.m.)

NSAID enzymatic activity COX1 and COX2 PLA2

Gastric toxicity

Membranes as meeting points for the action and toxicity of therapeutics

The case of NSAIDs

membrane model systems

Liposomes

Monolayers

Cell membrane

Inflamated cell membrane

mitochondrial membrane

NSAID enzymatic activity COX1 and COX2 PLA2

Gastric toxicity

EPC
DPPC
DMPC
DPPG

DOPC/DOPE/TOCL

DMPC/DPPE (7:3)

DPPC (gel phase)

рН

temperature

Ionic strength

The case of NSAIDs

Drug properties

Drug membrane concentration

membrane/aqueous phase partition

Drug membrane location

Surface charge

What is the partition coefficient?

The partition coefficient of the drugs is a measure of their lipophilicity and thus their ability to interact with biomembranes

The partition coefficient of drugs is determined by their distribution in a biphasic system:

Aqueous Phase

Organic/lipidic Phase

Octanol/Water

Micelle/Water

Liposome/Water Membrane/Water

Drug membrane concentration

Derivative Spectroscopy method

- Elimination of the light scattering interference
- Improved band resolution
- K_D determination without phase separation

Drug membrane concentration

- Fast experimental protocol
- It is possible to measure Kp of several drugs at the same time
- Small amounts of samples
- Automatic data treatment

Drug membrane concentration

Drug membrane concentration

Drug membrane concentration

DRUG PROPERTIES: Drug membrane concentration

Drug membrane concentration

Drug membrane concentration

The case of NSAIDs

Drug properties

Drug membrane concentration

membrane/aqueous phase partition

Drug membrane location

Surface charge

NSAID partition coefficient values (K_p) in LUV of EPC

NSAID	K _{p LUV/water}	P _{octanol/water}
Hydrophobic Naproxen	2391 <u>+</u> 473	2188
drug/membrane Nimesulide interactions	360 <u>+</u> 25	398
Hydrophobic and Tolmetin	220 <u>+</u> 70	0,10
electrostatic Meloxicam drug/membrane	685 <u>+</u> 70	1,17
interactions Lornoxicam	493 <u>+</u> 81	63

Drug membrane location

Why is important to predict location of drugs in the membrane?

Drug membrane location

How can we predict the location of drugs in the membrane?

DPH-PA: 1-(4-(6-phenyl)-1,3,5-hexatrienylpropionic acid

DPH: 1,6-Diphenyl-1,3,5-hexatriene

ANS: 1-anilinonaphthalene-8-sulfonic acid

Drug membrane location

The case of NSAIDs

Drug properties

Drug membrane concentration

Drug membrane location

Surface charge

TOLMETIN

Membrane surface charge

The case of NSAIDs

Drug properties

Drug membrane concentration

Drug membrane location

Surface charge

The polar heads of the phospholipids can affect the function of a membrane since this is the part of the lipids that is present on the membrane surface, and is responsible for the interaction with the surrounding.

The electrostatics of the lipid membranes affects membrane-protein interactions, domain formation and other membrane functions.

BIOPHYSICAL EFFECTS:

Dynamic properties

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Why study membrane dynamic properties?

Modifications membrane dynamic properties (diffusion, permeability, fluidity bilayer, order, packing) may modify the functionality of receptors in vivo presumably due to changes in the movement or orientation of proteins which float within matrix of the lipid bilayer.

BIOPHYSICAL EFFECTS:

Dynamic properties

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Fluidity corresponds to all the lipid dynamic aspects such as:

Microviscosity and order.

- Differential scanning calorimetry (DSC)
- Langmuir isotherms
- Fluorescence anisotropy

Microviscosity and phase transition

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Tp – pre-transition temperature

Tm – Main phase transition temperature

Effect in T_p

Drug interacts with polar head groups

Effect in T_m

T_m indicates that drug induces destabilization

Effect in ΔH

↓ ΔH indicates insertion at the level of hydrophobic region of the membrane, changes in lipid chain packing.

DSC results interpretation

Microviscosity and phase transition

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Effects of NSAIDs:

- Decrease of the main phase transition temperature (T_m) .
 - Decrease of **cooperativity** of the transition temperature (narrower phase transition peaks)

Increase of membrane fluidity

Microviscosity and phase transition

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Steady-state anisotropy

Anisotropy (r) measurements indicate the rotation capacity of a fluorescent probe during the excited lifetime.

Microviscosity and phase transition

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Drug has an effect in membrane phase transition

Structure and order

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

DMPC + DPPE (7:3)

(BAM – Brewster angle microscopy)

Structure and order

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

X-RAY SCATTERING

WIDE ANGLE (WAXS)

SMALL ANGLE (SAXS)

WAXS MEASURES
LIPID PACKING

SAXS

SAXS MEASURES
BILAYER THICKNESS

X-rays resolution

~ 4 - 1000 Å

Structure and order

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

X-RAY SCATTERING

WIDE ANGLE (WAXS)
SMALL ANGLE (SAXS)

~ 4 - 1000 Å

	١
C / Y C	
	Į

JAKS	
(Gel phase)	20 °C
	d (Å)
DPPC	63,7 <u>+</u> 0,5
DPPC + Nimesulide	63,7 <u>+</u> 0,5
DPPC + Acemetacin	74,6 <u>+</u> 0,5
DPPC + Indomethacin	69,7 <u>+</u> 0,5
	77,0 <u>+</u> 0,5

No visible perturbation of the gel phase

d doesn't change

d increases
Increases the water
layer thickness

Structure and order

Orthorrombic packing

Drugs penetrate into the bilayer changing the headgroup conformation altering the lipid packing

Structure and order

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Drug penetrates into the monolayer changing the tilt angle

When the drug is squeezed out, the tilt angle does not reach the normal value

Even in the aqueous phase drug is still interacting with the membrane

GRAZING INCIDENT X-RAY DIFRACTION (GIXD)

Structure and order - AFM

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Dynamic properties

Membrane phase transitions

Membrane structure

Supported lipid bilayer (SLB) of DPPC pH 7.4 (gel phase)

Before addition of drug

AFM example of results interpretation

Structure and order - AFM

Lipid domain diameter decreases

Lipid bilayer thickness decreases

These effects can be correlated with local gastric toxicity

AFM example of results interpretation

Supported lipid bilayer (SLB) of DPPC pH 7.4

After addition of drug (Tolmetin)

Structure and order - AFM

AFM example of results interpretation

Piroxicam causes holes in the lipid bilayer

The number and the diameter of the holes in the lipid bilayer increase with time

These effects can be correlated with local gastric toxicity

Structure and order - AFM

AFM example of results interpretation

Nimesulide has no visible effect on the lipid bilayers

These effects can be correlated with local gastric toxicity

This drug has the less gastric effects

Gastric toxicity is the most common problem with the use of NSAIDs

Stomach is protected with a layer of DPPC in the gel phase

Drug effects presented in lipid bilayers of DPPC can be correlated with gastric toxicity

Effects of NSAIDs:

Modifications of membrane structure and membrane biophysical properties

- **Increase the water layer** between the bilayers
- Change the tilt angle between the phospholipid molecules
- -Change the headgroup orientation of the bilayer phospholipids.
- Increase membrane fluidity
- Formation of holes in gel bilayer

More toxic drugs have higher effects

The case of NSAIDs

Modifications of membrane structure and membrane biophysical properties

Drugs can interact directly with enzymes

or

Drugs can interact with lipid bilayers changing membrane interface

This can lead to enzymatic inhibition

This two mechanisms were studied for PLA2

PLA2 is an enzyme involved in the inflammatory process

PLA2 is water soluble but acts at the membrane level hydrolising membrane phospholipids

How the PLA2 inhibition mechanism was studied?

Enzyme activity and Inhibition studies

Enzyme conformation studies

Drug-enzyme binding studies

Effect of drugs in membrane interface

Fluorescence studies with ADIFAB probe

NSAIDs

Membrane structure

Inhibition

PLA2 activity

Influence

Inhibition

Kd=18.87

Biophysical Chemistry 152, 109–11 (2010) Chemistry and Physics of lipids (in press) (2011)

[PIROXICAM] µM

How the PLA2 inhibition mechanism was studied?

Enzyme activity and Inhibition studies

Enzyme conformation studies

Drug-enzyme binding studies

Effect of drugs in membrane interface

These studies prove that the effects of drugs on membrane biophysical properties contributes to their mechanism of action

LANGMUIR ISOTHERMS

WAXS

CONFORMATION

CD, FLUORESCENCE

MEMBRANE LOCATION

FLUORESCENCE QUENCHING

INHIBITION

FLUORESCENCE LANGMUIR ISO-THERMS Study the role of membrane on the mechanisms of action and toxicity of therapeutics

MEMBRANE / WATER PARTITION

DERIVATIVE SPECTROSCOPY

BINDING

FLUORESCENCE

STRUCTURE

AFM, BAM, SAXS WAXS PHASE TRANSITIONS

DSC , FLUORESCENCE ANISOTROPY LANGMUIR ISOTHERMS Salette Reis Marlene Lúcio

Gerald Brezesinski

Cláudia Nunes (PhD)
Marina Pinheiro (PhD)
Juliana Brittes (MSc)
Catarina Pereira-Leite
Daniela Lopes
Marta Oliveira
Mariana Arêde
Rafael Amaral
Ana Rentão
Catarina Alves
Natacha Rosa

José L. F. C. Lima

FCT Fundação para a Ciência e a Tecnologia

