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Abstract It is now widely accepted that weather conditions
occurring several months prior to the onset of flowering
have a major influence on various aspects of olive repro-
ductive phenology, including flowering intensity. Given the
variable characteristics of the Mediterranean climate, we
analyse its influence on the registered variations in olive
flowering intensity in southern Spain, and relate them to
previous climatic parameters using a year-clustering ap-
proach, as a first step towards an olive flowering phenology
model adapted to different year categories. Phenological
data from Cordoba province (Southern Spain) for a 30-
year period (1982–2011) were analysed. Meteorological
and phenological data were first subjected to both hierarchi-
cal and “K-means” clustering analysis, which yielded four
year-categories. For this classification purpose, three differ-
ent models were tested: (1) discriminant analysis; (2)
decision-tree analysis; and (3) neural network analysis.
Comparison of the results showed that the neural-networks
model was the most effective, classifying four different year
categories with clearly distinct weather features. Flowering-
intensity models were constructed for each year category
using the partial least squares regression method. These
category-specific models proved to be more effective than
general models. They are better suited to the variability of
the Mediterranean climate, due to the different response of
plants to the same environmental stimuli depending on the
previous weather conditions in any given year. The present

detailed analysis of the influence of weather patterns of
different years on olive phenology will help us to under-
stand the short-term effects of climate change on olive crop
in the Mediterranean area that is highly affected by it.

Keywords Olive . Phenology . Aerobiology . Forecasting
model . Clustering . Climate change

Introduction

This study was focussed on the southern Spanish region of
Andalusia, which has by far the world’s largest area given
over to olive plantations (1,511,687 ha) and an annual olive
output generally exceeding 5,000,000 t. Within this region,
Cordoba province has the second-largest olive-growing ar-
ea, with 343,812 ha producing an average of 1,000,000 t
olive crop (Andalusia Statistical Yearbook 2010).

The olive is a temperate, spring-flowering tree. The bio-
climatic requirements for flowering vary as a function of the
tree’s phenological status (Galán et al. 2001b; Aguilera and
Ruiz 2009). Reproductive structures grow from undifferen-
tiated buds within a few months of dormancy, this phase is
termed differentiation. But differentiation must occur after
induction: certain temperature requirements need to be met
in order for bud break to take place; these may vary depend-
ing on the olive variety and on the degree of climate adap-
tation (Galán et al. 2005; García-Mozo et al. 2009).
Although it is generally accepted that an initial induction
occurs during summer months, a stress period during winter
(induced by low temperatures) is also required to break bud
dormancy (Andreini et al. 2008; Fernandez-Escobar et al.
1992; Orlandi et al. 2004; Rallo and Martin 1991). Flower-
ing starts once a certain amount of heat has been accumu-
lated but cold spells during endodormancy have been found
to favour increased inflorescence formation, while the lack
of cold leads to further development of branches
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(Bonofiglio et al. 2009; Orlandi et al. 2005; IOOC 1996). In
general, the Mediterranean climate is characterised by hot,
dry summers and mild, rainy winters. However, it is also
characterised by a marked year-on-year variations in weath-
er patterns, due mostly to the alternation of wet and dry year
periods.

Because olive trees are anemophilous, flowering intensi-
ty was measured by means of airborne pollen detection. The
amount of pollen detected by air samplers is considered to
be direct proportional to the flowering intensity in anemoph-
ilous species that are within the effective area of the pollen
sampler (Frenguelli 1998; Subba-Reddi and Reddi 1985).
However, this assumption should be treated with some
caution since, before being caught by the air sampler, the
pollen has had to surmount the release process and transport
to the pollen sampler, processes highly dependent on envi-
ronmental conditions (García-Mozo 2011; Frenguelli 1998;
Subba-Reddi and Reddi 1985). Weather conditions influ-
ence the flowering season, not only by regulating flower and
pollen production but also, in the case of wind-pollinated
plants, by regulating the timing of pollen season and there-
fore shaping pollen-curve dynamics. Olive is also charac-
terised by exhibiting a high tendency toward variable
flowering intensity that is highly related to the alternation
in fruit production (Galán et al. 2004, 2008; Lavee 2006).
Earlier research in the study area showed that olive flower-
ing intensity was influenced mainly by temperature and
rainfall over the preceding months (Galán et al. 2001a).
Olive flowering may also vary, even within the study area,
as a function of plant physiological status, which is itself
governed by a number of factors including genetic back-
ground, internal reserves and local weather conditions
(García-Mozo et al. 2009). The present study sought to test
the hypothesis that the differentiation of year categories as a
function of phenological and meteorological features, prior
to the construction of phenological flowering-intensity mod-
els, would help to render these models more accurate. The
different categories would serve as indicators of physiolog-
ical status, as well as providing value information on repro-
ductive phenology. Clustering analysis enabled different
weather-related variables to be included in each category.
It was assumed that year-clustering would provide a better
fit for phenological models. For this purpose, the following
three-step method was developed: (1) a clustering step using
a K-means method, (2) a classification step using an artifi-
cial neural network (ANN) method, and (3) a forecasting
step using the partial least squares regression (PLSR) meth-
od. Since olive is wind-pollinated, it was possible to pre-
cisely measure flowering intensity as a pollen index (PI) that
records the sum of daily airborne pollen data throughout the
entire pollination season (Galán et al. 2007).

In an earlier paper, we constructed some indices
covering the main variables affecting olive flowering

intensity in Cordoba: the thermal index (TI), the pre-
flowering hydric index (PFHI), and the cyclicity index
(CI) (Oteros et al. 2012). These were constructed using
weather-related and phenological data, and various ad-
justment criteria were tested to ensure that models
reflected the extreme weather events characteristic of
the Mediterranean climate. These indices were used for
clustering purposes in the present study. A number of
authors have made use of clustering techniques in phe-
nological and aerobiological research, e.g. for pollen
back-trajectory analysis in the atmosphere (Hernández-
Ceballos et al. 2011), and for daily airborne pollen
forecasting (Makra et al. 2006; Sánchez-Mesa et al.
2002). The year-clustering approach has also been used
in comparing classification methods and for general
long-term forecasting, although not hitherto for specific,
long-range forecasting purposes (Sánchez-Mesa et al.
2005). In the present study, each proposed year category
would represent a distinct physiological situation, result-
ing from exposure of olive trees to different environ-
mental conditions. With a view to selecting the model
providing the best classification of future years in terms
of weather-related features, several classification meth-
ods were tested. Fitted models to predict olive flowering
intensity constructed for each year category were com-
pared to a general model including all the years of the
studied period.

This study should improve our knowledge of olive
reproductive behaviour in a Mediterranean climate, i.e.
in a region specially affected by climate change (IPCC
2007). Plant phenology is seen as one of the most
important bio-indicators of climate change, since trends
can provide considerable temporal and spatial informa-
tion regarding ongoing changes (Galán et al. 2005).
Analysis of the influence of weather patterns on olive
phenology will help us to understand the short-term
effects of climate change on olive crops. Also, advance
information regarding olive-pollen intensity could be of
particular value in a number of fields. Olive pollen is
highly allergenic in the Mediterranean area (Dominguez
et al. 1993; D’Amato et al. 2007; Barber et al. 2008),
and patients with atopic or allergic asthma could be
forewarned regarding likely pollen peaks. Pollen counts
also provide a valuable bioindicator of flowering inten-
sity and therefore of the volume of the forthcoming
harvest, and are thus of value to farmers (Galán et al.
2004, 2008; García-Mozo et al. 2008; Ribeiro et al.
2008).

The first aim of this study was to develop a method for
forecasting olive pollen season intensity by clustering years on
the basis of phenological and meteorological data. A second
objective was to compare the accuracy between different
classification methods trying to improve the methodology.
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Materials and methods

Study area and phenological data

The city of Cordoba is situated in south-west Iberian Penin-
sula (37°50′N, 4°45′W), 123 ma.s.l. The area has a Mediter-
ranean climate with some continental features. The annual
mean temperature is 17.8 °C and the annual average rainfall
is 621 mm. Phenological data for the last 30 years (1982–
2011) regarding flowering intensity were measured by analy-
sing airborne pollen using a Hirst-type volumetric spore trap
(Hirst 1952) placed on the roof of the Educational Sciences
Faculty, at 15 m above ground level, which offers olive pollen
data from a radius of 100 km around, well representing
Cordoba province olive flowering phenology (Hernández-
Ceballos et al. 2011). Pollen counts were obtained using a
standard protocol published by the Spanish Aerobiology Net-
work (REA) (Galán et al. 2007). Weather data for the last
30 years (1982–2011), provided by the Spanish State Meteo-
rology Agency (AEMET), were taken at Cordoba Airport,
located around 5 km south of the pollen-sampling site.

Year clustering

The first step was to assign the study years into clusters, on
the basis of phenological and weather data. Phenological
features of the intensity of flowering season were based on
the variations of PI and average daily pollen counts during
the pre-peak period of the pollen season (ADPP). Three
biometeorological indices, proposed in an earlier study
(Oteros et al. 2012), aimed at identifying the factors most
influencing pollen season characteristics: TI (1), which takes
into account the heat conditions in January and March by
adjustment criteria; PFHI (2), which takes into account
rainfall in February and March (both indices covering the
heat and water conditions most affecting olive flowering
intensity in Cordoba); and finally CI (3, 4), an autoregres-
sive index that seeks to emulate cyclic changes in the pollen-
index time-series. The development of the CI is summarized
in two steps (3, 4), where CI2 is the final CI.

TI ¼ T minMð Þ RanTMð Þ= ð1Þ
(TminM) is minimum March temperatures and (RanTM)

is March temperature range.

PFHI ¼ RfFð Þ þ RfMð Þ ð2Þ
(RfF) is the sum of total rainfall in February and (RfM) is

the total rainfall in March.

CI1 ¼ AC þ AV ; if PIn�1ð Þ < PIn�2
1:25

� �þ PIn�2ð Þ
ACþAV

2 ; if PIn�1ð Þ � PIn�2
1:25

� �þ PIn�2ð Þ
�

ð3Þ

(AC) is the number of years elapsing since the last
appreciable crest and (AV) is the number of years
elapsing since the last appreciable valley. The term
“crest” was used to denote the change from a rising to
a falling trend in the PI time series, while “valley”
referred to the change from a falling to a rising trend
(Oteros et al. 2012).

CI2 ¼
PIn�1
4:8

� �þ PIn�1; if CI1ð Þ � CI1n�1ð Þ > 0
PIn�1; if CI1ð Þ � CI1n�1ð Þ ¼ 0

PIn�1
1:8

� �� PIn�1; if CI1ð Þ � CI1n�1ð Þ < 0

8<: ð4Þ

Clustering analysis

First, the optimum number of natural groups of years (K)
was determined by hierarchical clustering analysis; clusters
were then generated by “K-means” conglomerate analysis.
Both methods were developed using the software Unscram-
bler 9.7 (http://www.camo.com).

Hierarchical clustering analysis was performed using
Ward’s method, in which information is quantified as
the sum of squared distances of each element with
respect to the centroid of the cluster to which it
belongs. To do this, we first calculated the mean vector
of all variables, the multivariate centroid for each clus-
ter. Next, we calculated the squared Euclidean distances
between each element and the centroid (mean vector) of
all clusters. Finally, distances for all elements were
combined.

The “K-means” conglomerate method was used for
cluster generation: “k” groups of years were generated
on the basis of similar meteorological and phenological
characteristics. The five variables used were standar-
dised before performing cluster analysis, in order to
remove any dependency on measurement units. Of the
various types of cluster analysis available, this was
deemed to the most appropriate, in that it provides a
more flexible approach and does not assume any spe-
cific distribution of variables.

Characterisation of year categories

To characterise each category, the centroid of each clus-
ter was analysed; weather and pollen-count patterns
were examined for each of the years making up the
cluster. The four year categories were designated C1–
C4. A descriptive statistic analysis of several features of
the years was performed using the software R 2.11.1.
We analyzed the averages and standard deviations of
meteorological parameters and aerobiological features
of years.
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Classification modelling

Models were constructed to classify other years on the basis
of the weather conditions recorded prior to the pollen sea-
son, using the indices TI, PFHI and CI. Classification mod-
els were constructed using three different techniques: (1)
linear discriminant analysis, (2) decision trees and (3) arti-
ficial neural networks.

The models were validated using the k-fold cross-
validation test. K-fold cross-validation is similar to sim-
ple cross-validation but the original sample is parti-
t ioned randomly into k subsamples. Of the k
subsamples, a single subsample is retained as the vali-
dation data for testing the model, and the remaining k−1
subsamples are used as training data. The cross-
validation process is then repeated k times (the folds),
with each of the k subsamples used exactly once as the
validation data. The optimal k used was 4 and that is
the most appropriate k number considering that we
work with four categories.

All classification models were built using the software
Weka 3.7.4 (http://weka.softpedia.com/).

Linear discriminant analysis

The goal of linear discriminant analysis (LDA) is to
establish a linear discriminant function, based on the
original variables, which will discriminate between dif-
ferent classes. LDA seeks a linear combination or func-
tion, D, of the independent variables that maximizes the
between-class variance relative to the within class vari-
ance. The latent variable thus obtained is called a ca-
nonical variate. For k classes, k−1 canonical functions
can be calculated. Each time, LDA will select a direc-
tion leading to maximum discrimination between the
given categories (Fisher 1936).

Decision trees

Decision tree (DT) building is a machine-learning
method adapted for classification and prediction. DT-
based methods express their results as a graphical
presentation of decision rules. DT consists of a root,
a number of internal nodes representing attributes and
a sequence of branches representing attribute values.
The tree ends in leaves reflect the appropriate target
attribute and indicating a class. The descending order
of the attribute is calculated on the basis of the gain
ratio. The attribute with the highest information gain is
selected for generating the root of the tree (Kirchner et
al. 2004). The algorithm selected in our work as the
most accurate was the termed LMT-I-1-M 15-W 0.0
using Weka 3.7.4.

Artificial neural network

In this subsection we consider standard sigmoidal ANN, or
multilayer perceptron (MLP), as the base classification mod-
el. ANN can overcome the longer training time and the
difficulty in determining hidden layer units of a backpropa-
gation network to a large extent. An ANN is a three-layer
feed-forward neural network. For determining the best ANN
model, we apply an backpropagation algorithm to find the
basis functions or nodes of the hidden layer: B(x,W)0
{B1(x,w1), B2(x,w2), …, Bm(x,wm)}, corresponding to the
nonlinear part of the discriminant functions, fl(x,θl). We
have to determine the number of basis functions “m” and
the weight matrix “w”. To apply evolutionary neural net-
work techniques, we consider an ANN with softmax outputs
defined in Eq. (5) and the standard structure: an input layer
with a node for every input variable; a hidden layer with
several sigmoidal nodes; and an output layer with J-1 nodes,
where J is the number of classes.

If the output layer of the ANN bθ� �
classifier is interpreted

from the point of view of probability, which considers the
softmax activation function:

g1 x; θlð Þ ¼ exp fl x; θlð ÞPQ
l¼1

exp fl x; θlð Þ
for l ¼ 1; . . . ;Q ð5Þ

where gl(x,θl) is the probability a pattern x has of belonging
to class l, θ1 ¼ b1;w1; . . . ;wMð Þ, where b1 ¼ b11; . . . ; b

1
M

� �
is

the l-th vector of weights of a node in the hidden layer to the
l output node, M is the number of hidden nodes, wj ¼
wj
0; . . . ;w

j
k

� �
for j01......M, is the vector of weights of the

input layer to the hidden node j, and fl(x,θ1) is the output of
the l-th output node for pattern x given by:

fl x; θlð Þ ¼ bl0 þ
XM
j¼1

bljbj x;wj

� �
for l ¼ 1; . . .Q� 1 ð6Þ

fQ x; θQ
� � ¼ 0 ð7Þ

where Bj x;wj

� � ¼ σj wj
0 þ

Pk
i¼1

wj
ixi

� �
is the sigmoidal acti-

vation function of the nodes in the hidden layer.
The classification rule coincides with the optimal Bayes

rule. In this way, by g classifiers, the classification rule assigns
an individual to the class with the maximum probability, given
vector measurement x:CðxÞ ¼bl, wherebl ¼ argmaxlgl x;bθl� �

,
for l01,…,Q. Detailed descriptions of various forms of neural
networks are provided elsewhere (Bishop 1995; Haykin 1994;
Gutiérrez et al. 2009; Martinez-Estudillo et al. 2006).
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Results of classifications models (the confusion matrices
and the percentages of correctly classified years) were com-
pared in order to select the most effective method.

Modelling

To analyse the performance of clustering analysis, different
models were tested for each year category. The performance
of these models (significance level, standard error and
RMSE) was compared with that of other forecasting models
not involving conglomerate analysis. RMSE was obtained
by the following expression (8), where Y 0 observed data
and F 0 expected data:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
t¼1 Yt � Ftð Þ2

N

s
ð8Þ

Forecasting models were constructed using the PLSR
technique, taking PI, i.e. the annual sum of daily pollen
counts, as dependent variable. Fitted predictive models were
thus generated for each of the four categories (designated
C1M to C4M), and a general model (GM) was constructed
using all years. The models were built using the software
Unscrambler 9.7.

Modelling was based on a linear transformation of the
original descriptors to a small number of orthogonal factors
(latent variables), attempting to maximize the covariance
between the descriptors and the dependent variable; this
procedure provides the optimal linear model in terms of
forecasting. Here, each latent variable represented a key
factor for olive flowering intensity.

Results

Clustering

To obtain the number of classes to be considered in the “K-
means” algorithm, we applied hierarchical clustering, yield-
ing the optimal number of groups that should be considered
for “k-means” clustering equal to 4.

Once the optimal number of classes was defined, we
applied a “4-means” clustering to group the study years into
four clusters as a function of pollen-counts and weather-
related characteristics. Categories were defined on the basis
of meteorological characteristics and pollen parameters con-
sidered indicative of olive physiological and phenological
status. PI is related directly to both types of parameters.

Centroid characteristics for each cluster are shown in
Table 1; years belonging to a given category shared similar
characteristics. The variables were bioclimatic indices, duly
standardised in order to remove any dependency on mea-
surement units. Figure 1 shows the relationship between

years clustered into different categories and PI. In Fig. 1b
we can see the structure of the dendrogram resulting from
hierarchical cluster analysis.

Category characterisation

Results for the descriptive analysis of years assigned to the
various categories are shown in Table 2. Each category was
defined in terms of the main features of the pollen season:
the PI, pollen peak (PPk), pollen-season start-date (StD) and
number of days with more than 100 grains (>100). Two
major bioindices influencing the pollen season were includ-
ed: PFHI and TI.

Weather-related variables for the months from Janu-
ary to May refer to the current pollen season, while
variables for summer (June–September) and autumn
(September–December) months refer to the previous
pollen season, since these have a greater effect on
flowering characteristics.

Category 1: Dry years

The years assigned to cluster 1 displayed lower PIs (55% of the
average), low daily pollen counts and low pollen peaks
(Table 2). In terms of weather conditions, they were character-
ised by mild summers: maximum, mean and minimum temper-
atures from June to September were below the average for
Cordoba. Autumns were dry and had a wider-than-average
temperature range (12.5 ° C vs. average 11.9 °C). Rainfall
between September and January in Category 1 (307 mm) was
also lower than average for Cordoba (370 mm). The period
from January to April was cold and dry, minimum temperatures
being lower than average: January 0.8 °C (average 3.8 °C),
March 0.7 °C (average 7.2 °C). May temperatures were 0.6 °C
below average (27.1 °C). Rainfall from February to April was
25 % below average.

Weather data for 1982 lay at the shortest distance from
the centroid of the cluster, signifying that they were the most
representative for Category 1.

Table 1 Centroids of each cluster. CI Cyclicity index, PFHI pre-
flowering hydric index, TI thermal index, PI pollen index, ADPP
average daily pollen counts during the pre-peak period of the pollen
season

Conglomerate

1 2 3 4

CI −0.68 −0.36 0.57 1.52

PFHI −0.53 0.47 −0.46 1.36

TI −0.59 −0.07 0.27 1.29

PI −0.83 −0.15 0.49 1.75

ADPP −0.74 0.11 0.26 1.48
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Category 2: Cold years

Category 2 displayed average PIs and daily pollen counts.
Like C1, however, the number of days with over 100 pollen
grains was low. Summer temperatures were below the aver-
age for Cordoba. Maximum temperatures from October to
December were 1 °C below average, while average temper-
atures were recorded in January and February; April temper-
atures were 1.1 °C below average. Rainfall during this
period was within the average range for the area.

Category 3: Warm years

PIs in Category 3 years were 25 % above average, while
daily pollen counts were average; however, the number of
days with pollen counts exceeding 100 pollen grains/m3 of

air was higher than average. In Category 3 years, flowering
started 5 days earlier than average. Summer and autumn
temperatures were average, while rainfall from September
to January was 80 mm above average. Temperatures from
January to April were higher than the average for Cordoba:
maximum temperatures from January to March were around
1 °C above average. Rainfall during this period was within
the average range for the area.

Category 4: Wet years

Category 4 was characterised by very high PIs (193 % of
local average), and high daily pollen counts. The pollen
peak was higher than in the other categories. The pollen
season was longer and the number of days with pollen
counts exceeding 100 pollen grains/m3 of air was greater.
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Fig. 1 Relationship between years clustered into different categories and pollen index (PI). Category 1 (C1), Category 2 (C2), Category 3 (C3),
Category 4 (C4). Inset shows the dendrogram resulting from hierarchical clustering

Table 2 Descriptive analysis of each category (C1–C4). Pollen
season characteristics: PI Pollen index, PPk pollen peak, StD
starting date, >100 number of days with more than 100 grains.

Some important biometeorological indices influencing pollen sea-
son were included: PFHI pre-flowering hydric index, TI thermal
index

C1 C2 C3 C4 Total

Mean SD Mean SD Mean SD Mean SD Mean SD

PI 9,841 3,832 16,277 1,526 22,332 3,338 34,343 3,356 17,710 9,500

PPk 1,512 1,146 2,292 1,099 2,702 854 3,901 2,040 2,304 1,485

StD 115 7 114 13 108 13 116 9 113 10

>100 25 11 26 7 32 5 31 7 27 9

PFHI 67 32 140 53 72 55 205 87 106 73

TI 0.37 0.11 0.45 0.14 0.54 0.16 0.72 0.10 0.48 0.18
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Summers were characterised by extreme temperatures:
maximum, mean temperatures and minimum temperatures
were 0.6 °C above average.

Autumns and winters were mild and rainy: the tempera-
ture range from September to January was 0.9 °C below
average. Rainfall was higher than average over this period.
The temperature range from January to April was 0.8 °C
below average. Rainfall from February to April was 80 mm
higher than the average for Cordoba.

Classifications

Three different methods were used to classify years within a
given class: (1) discriminant analysis; (2) decision trees; and
(3) neural networks.

Three variables were used for to test each analysed
method: TI, PHI and CI. The three models were vali-
dated by 4-fold cross-validation. A total of 73.3 % of
cases were classified correctly by LDA, a total of
76.6 % of cases were correctly classified by the DT
method and a total of 80 % of cases were correctly
classified by the ANN method. The neural network
model thus proved to be the most effective of the three
models tested. Table 3 shows the confusions matrices
resulting from the classification methods tested.

Forecasting modelling

Different PLSR models were constructed to predict PI. A
model was generated for each year category (C1M, C2M,
C3M and C4M), and one GM was constructed for all study
years.

A summary of statistical parameters, including R2 and
RMSE for the training model and cross-validation for the PI
model, is shown in Table 4. As the results indicate, differ-
entiation into several categories could be a useful tool for
forecasting modelling.

The relationship between observed PI and the PI pre-
dicted by each PLSR model is shown in Fig. 2, which shows
the PI predicted by the GM and the PI predicted by each
specific category model.

The major coefficients for each model are shown in
Fig. 3. The influence exerted by the weather-related varia-
bles examined here varied among categories. In overall
terms, coefficients show that the general model of condi-
tions prompting high PI included hot summers, rainy
autumns, cold winters and mild, rainy springs. Category 1
years, characterised by drought, cold and low flowering
intensity, were dependent largely on March rainfall and did
not require lower winter temperatures. Category C2 years—
with lower-than-average temperatures and medium-to-low
flowering intensity—also had no need for very low winter
temperatures. In C3 years, characterised by warm temper-
atures and middle-high flowering intensity, the high mini-
mum temperatures in March had a negative effect.
Coefficients for C4 years, which had warm temperatures,
heavier rainfall and high flowering intensity, were similar to
those recorded for the GM.

Discussion

This study sought to identify the weather-related parameters
most influencing olive flowering intensity, expressed as PI,
in the Mediterranean climate. Although in anemophilous
plants PI is a good indicator of flowering intensity, this
statement should be taken with some caution since before
the pollen can be caught by an air sampler, it has had to
surmount the release process and be transported to the
pollen sampler—processes highly dependent on environ-
mental conditions (García-Mozo 2011; Frenguelli 1998;
Subba-Reddi and Reddi 1985). Nevertheless PI offers the
possibility of obtaining a quantitative value for a wide area
of study that can be compared objectively year by year.

A knowledge of factors most affecting flowering
variations is of particular value for agricultural and
environmental studies, and also for allergy sufferers, in
the Mediterranean area due to its variable climatic char-
acteristics. A great deal of research has attempted to
determine the factors affecting phenology and flowering
intensity in plant species, placing special attention on
the effect of climate change (e.g. Linkosalo et al. 2010;

Table 3 Confusion matrices.
Results of several classification
methods: LDA Linear discrimi-
nant analysis, DT decision trees,
ANN artificial neural network

LDA DT ANN

Predicted category Predicted category Predicted category Total

1 2 3 4 1 2 3 4 1 2 3 4

Observed Category 1 10 0 2 1 12 1 0 0 10 2 0 0 13

2 0 4 0 1 4 2 0 0 3 3 0 0 5

3 1 0 3 2 1 0 5 0 0 0 6 0 6

4 1 0 0 5 0 0 1 4 0 0 1 4 6
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Morton et al. 2011; García-Mozo et al. 2010). Also
some studies have focussed specifically on the olive
tree, seeking in most cases to predict flowering onset
and pollination intensity using linear regression techni-
ques (Galán et al. 2001a; Ribeiro et al. 2006a)

Only a few authors (e.g. Reynolds et al. 2002; Yu et al.
2010) have applied PLSR to phenological research, but this
technique has never been used in aerobiological studies. The
most novel aspect of this study was that it differentiated
between four different year categories using a year cluster-
ing approach prior to constructing the regression model.
Clustering has been used previously in phenological and
aerobiological research, not with the aim of predicting spe-
cific features of flowering intensity, but rather for general
short- or long-term forecasting purposes (Sánchez-Mesa et
al. 2002, 2005). The ANN model provided the most accu-
rate classification of years into groups. Other authors have
compared the effectiveness of discriminant analysis and
neuronal network analysis for classifying years with differ-
ent pollen intensities, and to make other predictions regard-
ing pollen season characteristics. (Aznarte et al. 2007;
Kasprzyk et al. 2011; Voukantsis et al. 2010; Rodríguez-
Rajo et al. 2010; Sánchez-Mesa et al. 2005; Puc 2012).

The physiological response of plants to the same envi-
ronmental stimuli may differ depending on the weather
conditions in any given year (Galán et al. 2001b). Year-
clustering took into account both weather-related variables
and phenological variables to determine the potential phys-
iological status of the olives in the study area. Four year-
categories were generated, each comprising years sharing
similar weather conditions, giving rise to similar phenolog-
ical characteristics. Specific models to predict flowering
intensity were generated for each year category. Though
minor differences were apparent in each category model
(CM), analysis of inter-model coefficients of variation
revealed more marked differences.

The general model (GM), constructed using data for all
30 study years, showed that rainfall in February and March
exerted a major influence on flowering intensity, expressed
as PI; similar findings have been reported by other authors
(Recio et al. 1996; Galán et al. 2001a). The GM also
indicated that low rainfall and higher minimum tempera-
tures in summer led to increased flowering intensity. The
amount of pollen available for spring flowering is influ-
enced by weather conditions over the previous summer, by
which time the mother cells designated to become pollen
grains are already present. When the summer is character-
ised by abnormally high temperatures and low rainfall, high
pollen counts tend to be recorded during the following
spring (Mandrioli 1987). In the olive, the rate of
flowering-bud differentiation is affected strongly by the
prevailing weather conditions over the previous summer
(Rallo and Cuevas 2004), which could prompt a higher rate
of fruit abortion, which would increase floral induction (Dag
et al. 2010).

The major influence of March–April temperatures has
also been reported in other research carried out in the Med-
iterranean area. A number of authors have found that mild
weather, i.e. narrow temperature ranges and high minimum
temperatures are associated with greater flowering intensity

Table 4 Pollen index (PI) partial least squares regression (PLSR)
model summary. GM General model, C1M category 1 model, C2M
category 2 model, C3M category 3 model, C4M category 4 model

Model Training Full cross-validation

R2 RMSE R2 RMSE

GM 0.63 5,652 0.53 6,597

C1M 0.86 1,391 0.53 2,741

C2M 0.94 328 0.19 1,499

C3M 0.97 498 0.84 1,464

C4M 0.99 289 0.64 2,251
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(Galán et al. 2001a). The GM displayed a strongly negative
coefficient for minimum temperatures in September and Oc-
tober, probably because this early cold impairs bud develop-
ment. However, lower temperatures in winter, and particularly
in December, are reported to favour flowering (Ribeiro et al.
2006b; Orlandi et al. 2010). Analysis of the optimal weather
conditions for olive flowering suggests that these tend to occur
in the Mediterranean climate, which would account for the
high degree of adaptation of the olive in the study area.

Cluster analysis showed that C1 years were marked by
dry springs and winters, with cooler temperatures through-
out the year; flowering intensity was very poor. Temperature
ranges in the summer have a negative effect on flowering
intensity, possibly because in summers with below-average

mean temperatures, a higher temperature range means that
the minimum temperatures are even lower.

C2 years were also characterised by cold winters and
springs, but did not display the low rainfall typical of C1
years. Flowering intensity was also poor. In the C2 years,
winter temperatures had a more intense effect than in gen-
eral: minimum temperatures in December to January had a
more positive effect, while the wide temperature range in
November and December exerted a negative influence; this
behaviour can be understood in a context of cold years.

C3 years were marked by warm summers, winters and
springs. Pollen counts were above the average for Cordoba,
and the pollen season started earlier than in other year
categories. Precipitation was lower than average in C3
years, and this could explain why rainfall in January and
February exerted a positive effect on the flowering intensity,
whereas rainfall from October to November and from March
to April showed a negative effect. On the other hand, an
influence of March temperatures was noted; maximum tem-
peratures exerted little influence, while high minimum tem-
peratures in March had a significant negative effect, perhaps
because they were particularly high in C3 years.

C4 comprised years with hot summers and mild autumns,
and heavy rainfall in both seasons. Weather conditions were
most conducive to high flowering intensity, as evident in
high PIs, high pollen peaks and high daily pollen counts.
The category-specific model indicated that summer temper-
atures exerted a positive effect on PI, perhaps because only
extremely high summer temperatures can produce a signif-
icant fruit abortion that can affect the next spring flowering.
Spring and autumn rainfall also had a positive influence,
although in the context of very wet years; September rainfall
did not have any positive influence.

The biological responses of plants to climatic variables are
rather complex. As stated above, the same weather conditions
can act differently on different plants depending on their phys-
iological status but plants are also highly influenced by adap-
tation to geographical features and local climates (García-Mozo
et al. 2009). The models obtained in this study are derived from
an empirical approach in a specific Mediterranean area and for
these reasons should be applied to different regions with ex-
treme caution. Although the methodology developed in the
present work could be considered applicable in other areas,
the proposed models were built for a specific region, and
therefore are not strictly transferable to different locations.

In overall terms, specific cluster-based CMs proved more
effective than the general model. Category differentiation
enhanced the effectiveness of phenological modelling for
two main reasons:

1. Weather conditions act differently on each year category,
since plant physiological status at any given time varies
from one category to another.
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2. The years comprising each category share similar flow-
ering intensity characteristics, so forecasting models are
subject to less error.

These category-specific models proved to be more effec-
tive than general models, and therefore better suited to the
variability of the Mediterranean climate, probably because
plants respond differently to the same environmental stimuli
depending on the weather conditions in any given year.
Moreover, analysis of the influence of weather patterns on
olive phenology will help us to understand the short-term
effects of climate change on olive crop in the Mediterranean
area that is highly affected by it.

Conclusions

Predictive models obtained using clustering analysis are
more effective than general models because the years com-
prising each category share similar aerobiological character-
istics and because weather conditions can act differently on
flowering intensity depending on previous meteorological
context that could have been decisive for configuring the
physiological status of plant.

PLSR proved valuable for generating phenological fore-
casting models.

The autoregressive and biometeorological indices used to
take into account the effects of extreme weather events
yielded optimal results in the construction of an effective
classification model. ANNs proved a useful tool for effec-
tive classification.

We corroborated the finding that summer weather con-
ditions play a major role in olive flowering intensity.
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