
Software Adaptation in the Context of MDA

Nathalie Moreno, José Raúl Romero and Antonio Vallecillo

Dpto. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain

{vergara,jrromero,av}@lcc.uma.es

Abstract. MDA seems to be one of the most promising approaches
for designing and developing software applications. It provides the right
kinds of abstractions and mechanisms for improving the way applica-
tions are built nowadays: in MDA, software development becomes model
transformation. MDA also seems to suggest a top-down development
process, whereby PIMs are progressively transformed into PSMs until a
final system implementation (PSM) is reached. However, there are situa-
tions in which a bottom-up approach is also required, e.g., when re-use is
required. Moreover, many times we are not interested in the creation of
new systems but in the maintenance or evolution of existing ones. How
to deal with these issues within the context of MDA? How to adapt these
systems when we are using an MDA approach for building our final ap-
plication? In this paper we try to introduce the main problems involved
in dealing with software adaptation in MDA, identify the major issues,
and propose some ways to address them, particularly in the context of
Component-based Software Development.

1 Introduction

Component-based software engineering is an emergent discipline that promises
to reduce development costs by creating a marketplace of pre-produced compo-
nents, that can be effectively used for building applications. Since components
may use different technologies and platforms, the possibility of reuse existing
software is a difficult problem to be addressed, so existing components may
work properly within new applications. Thus, software adaptation is required to
guarantee that different components will be able to interact in the right way both
at the syntactical and at the protocol and semantical levels. In this sense, the
Model Driven Architecture (MDA) [12] has recently appeared as an interesting
approach to address software adaptation and interoperability.

MDA allows us to: describe a system independently of the platform that
will support it (Platform Independent Model, PIM); specify platforms (Plat-
form Models, PM); select one or more particular platforms for the system; and
transform the PIM into one (or more) Platform Specific Models (PSM) — one
for each particular platform. In MDA, software development becomes an itera-
tive model transformation process: each step transforms one (or more) PIM of
the system at one level into one (or more) PSM at the next level, until a final
system implementation is reached.

MDA seems to imply a top-down development process. However, there are
situations in which a bottom-up approach is also required. For instance, how to
use and integrate pre-developed COTS components into the application? How
to deal with pieces of legacy code, or with third-party applications? Further-
more, many times we are not interested in the creation of new systems but in
the maintenance or evolution of existing ones. How to deal with these re-use
issues within the context of MDA? How much benefit will MDA bring to those
problems?

In this paper we introduce some problems involved in dealing with software
adaption within the context of the MDA approach. More specifically, the main
problems concerning to the reuse of COTS and legacy systems that we perceive
are: (a) the definition of the information (set of models) that needs to be pro-
vided/obtained for a piece of software in order to understand its functionality,
and how to re-use it; (b) the evaluation of the effort required to adapt it to
match the new system’s requirements; and (c) the (semi)automatic generation
of adapters that iron out the mismatches. After identifying some major issues,
we propose ways to address them in the particular context of Component-based
Software Development (CBSD).

The structure of this paper is as follows. After this introduction, Section 2
describes the major issues to be considered when reusing software pieces from
different technologies. Then, Section 3 discusses how to address some of these
issues concerning to software adaption within the context of the MDA. Finally,
Section 4 draws some conclusions and open lines of research.

2 Adaptation for re-use

Most of the existing approaches deal with software adaptation in a platform
and environment dependent way. In consequence, adaptors obtained by such
techniques do not seem to be as reusable as it is desirable. From our point of
view, this matter might be faced from a higher level of abstraction, e.g., at the
model level. In particular, MDA provides an approach for specifying a system
independently of the platform that will support it. However, several issues need
to be firstly answered, such as: What kind of information should the model of a
software system contain? How do we express such information?

Issues related to system modeling. There seems to be no consensus about
the information that comprises the model of a system, a component, or a service.
In this paper we will suppose that this information contains three main parts:
the structure, the behavior, and the choreography [14]. The former describes the
major classes or components types representing services in the system, their at-
tributes, the signature of their operations, and the relationships between them.
Usually, UML class or component diagrams capture such architectural informa-
tion. The behavior specifies the precise behavior of every object or component,
usually in terms of state machines, action semantics, or by the specification of the
pre- and post-conditions of their operations (see [10] for a comprehensive discus-
sion of the different approaches for behavior modeling). Finally, the choreography

defines the valid sequences of messages and interactions that the different ob-
jects and components of the system may exchange. Notations like sequence and
interaction diagrams, languages like BPEL4WS, or formal notations like Petri
Nets or the π-calculus may describe such kind of information.

Most system architects and modelers currently use UML (class or component
diagrams) for describing the structural parts of the system model. However, there
is no consensus on the notation to use for modeling behavior and choreography.
This is something that somehow needs to be resolved.

Issues related to components and legacy applications. Sometimes, com-
ponents and legacy applications also need to be integrated in systems. Thus, the
kind of information that is available from them will allow us to check whether
they match the system requirements or not. More precisely, this information
should be able to allow us to:

(a) model the component or legacy system (e.g., by describing its structure,
behavior, and choreography);

(b) check whether it matches the system requirements (this is also known as the
gap analysis problem [7]);

(c) evaluate the changes and adaptation effort required to make it match the
system requirements (i.e., evaluate the distance between the models of the
“required” and the “actual” services [11]); and

(d) ideally, provide the specification of an adaptor that resolves these possible
mismatches and differences [4, 5]).

The problem is that both COTS components and legacy applications are
usually black-box pieces of software for which there is no documentation or
modeling information at all. Even worse, if a model of a component or legacy
system exists, it may correspond to the original design but not to the actual piece
of software. The current separation between the model of the system and its final
implementation usually leads to situations in which changes and evolutions of
the code do not reflect in the documentation.

Some authors propose the use of reverse engineering to obtain the information
we require about legacy systems (basically, obtain their models from their code,
whenever the code is available). Thus, a reverse transformation would convert
the code of the legacy application into a fairly high-level model with a defined
interface that can be used to perform all the previous tasks.

But the problem is that reverse engineering can only provide a model at the
lowest possible level of abstraction. In fact, you can’t reverse engineer an archi-
tecture of any value out of something that did not have an architecture to begin
with. And even if the original system was created with a sound architecture,
very often the original architecture tends to get eroded during the development
process. So, what you usually get after reverse engineering is essentially just an
execution model of the actual software in graphical form. At that point, most of
the high level design decisions have been wiped out.

3 Modeling adaptors with MDA

Our proposal discusses how to address some of the problems mentioned in the
introduction concerning to software adaption within the context of the MDA,
making certain assumptions.

(1) We count with a model of the component or legacy system that we need to
re-use (e.g., structure, behavior and choreography).

(2) The PIM of the application describes the system as a set of interacting parts,
each one with the information about its structure, behavior, and choreogra-
phy. (This information can be either individually modeled, or obtained for
each element from the global PIM — by using projections, for example.)

(3) There are MDA transformations defined between the metamodels of the
notations used in the PIM for describing the system structure, behavior and
choreography, and those used in the PSM.

(4) Associated to each notation for describing structure, behavior and choreog-
raphy at the PSM level, there are a set of matchmaking operators (≤) that
will implement the substitutability tests. These tests are required to check
whether the required business component can be safely substituted by the
existing piece of software.

(5) We count on the existence of (semi)automated derivation of software adap-
tors (e.g., wrappers) that resolve the potential mismatches found by the
substitutability tests.

As shown in Figure 1, our starting point is the PIM of a business service or
component. As previously mentioned, the PIM of each business service comprises
(at least) three models with its structure, behavior and choreography.

At the right hand side of the bottom of the Figure 1 we have the piece of
software that we want to re-use (e.g., an external Web Service that offers the
financial services we are interested in). From its available information and/or
code we need to extract its high-level models, that will constitute the PSM
of the software element (and perhaps enriched with some information inferred
using reverse engineering). The Platform in this case will be the one in which
we express the information available about the element. Let us call P to that
platform, and let Ms, Mb and Mc the models of the structure, behavior and
choreography of the software element to be re-used, respectively.

Once we count with a PIM of the business service (our requirements) and
the PSM of the available software in a platform P , we need to compare them,
and check whether the PSM can serve as an implementation of the PIM in that
platform. In order to implement such a comparison, both models need to be
expressed in the same platform. Therefore, we will transform the three models
of the PIM into three models in P , using MDA transformations. Let they be
M ′

s, M ′
b and M ′

c, respectively.
Once they are expressed in the same platform and in compatible languages,

we can make use of the appropriate reemplazability operators and tools defined
for those languages to check that the software element fulfils our requirements,

COTS
(BLACK BOX)

COTS

 SPECIFICATION

ADAPTER

SPECIFICATION

STRUCTURE BEHAVIOR

ADAPTER

NO NO NO

BUSINESS COMPONENT

PIM

LANGUAGE

PSM

LANGUAGE

CODE

BEHAVIORAL MODEL STRUCTURAL MODEL CHOREOGRAPHY MODEL

nnnn

nnnn

MDA TRANSFORMATION/

IMPLEMENTATION

DOCUMENTATION OR

MDA TRANSFORMATION/ REV.

ENGINEERING

< ?

CHOREOGRAPHY STRUCTURE BEHAVIOR CHOREOGRAPHY

ADAPTABLE?

YES YES YES

YES

NO

NO

COMPONENT

SPECIFICATION

MDA TRANSFORMATION/

IMPLEMENTATION

GENERATED
COMPONENT

WORTH DEVELOPING?

YES

NO

REVIEW

ADAPTABLE?
NO

STRUCTURE BEHAVIOR CHOREOGRAPHY

< ? < ?

ADAPTABLE?

STRUCTURE BEHAVIOR CHOREOGRAPHY

MDA

TRANSFORMATION

MDA

TRANSFORMATION

MDA

TRANSFORMATION

Fig. 1. Integrating COTS into the MDA chain

i.e., Ms ≤ M ′
s, Mb ≤ M ′

b, and Mc ≤ M ′
c. If so, it is just a matter to use the PSM

software element as a valid transformation from the PIM to that platform.
But in case the software element cannot fulfil our requirements (i.e. its PSM

cannot safely replace the PSM obtained by transforming the PIM), we need to
evaluate whether we can adapt it, and if so, how much is the effort involved
in that adaptation. Some recent works are showing interesting results in this
area [4, 11]. The idea is, given the specifications of two software elements, obtain
the specification of an adaptor that resolves its differences. If such an adaptor
is feasible (and affordable!) we can use some MDA transformations to get its
implementation from the three models of its PSM. Otherwise, it is better to
forward-engineering the component, using MDA standard techniques from the
original business component’s PIM (left hand side of Figure 1).

Alternatively, the original PIM of the system might have to be revisited in
case there is a strong requirement of using the software element, which does not
allow us to develop it from scratch (e.g. in the cases of a financial service offered
by an external provider, such as VISA, or of a Web Service that implements a
typical service from Amazon or Adobe). In those cases, we must accommodate
the software design and architecture of our system to the existing products,
maybe using spiral development methods such as those described in [13].

4 Concluding Remarks

The general problem of re-use is much more complex, though. Although we
have over-simplified it, in this position paper we have discussed the major issues
associated to re-use within the context of MDA. However, how to deal with the
extra-functional requirements (e.g. robustness, usability, etc.)? Many of these
requirements are even more important than functionality when it comes to reuse
or upgrade an existing system. More specifically, we have presented an approach
to deal with COTS components and legacy code, based on a set of assumptions.
At this point, how far we currently are from achieving these assumptions ? What
work need to be carried out for making them become true?

Some of the required information is not difficult to obtain, specially at the
structure level: the signature of the interfaces of the software elements are com-
monly available (e.g. WSDL descriptions of Web Services). However, the situa-
tion at the other two levels is not so bright, and only for Web Services might
definitely be resolved in a near future. For the rest of the components there are
some small advances (see, e.g., the work by Meyer [1] on extracting contract
information from .NET components) but most of the required information will
probably never be supplied [2], unless a real software marketplace for them does
ever materialize.

Although there is no agreed notation for modeling behavior (or even consen-
sus on a common behavioral model), we expect UML 2.0 to bring some consensus
here. However, this also strongly depends on the availability of tools to support
the forthcoming UML 2.0 standard.

Regarding to MDA transformations, there are some proposals already avail-
able that provide correspondences between different languages, such as UML
(Class diagrams) to Java (interfaces), EDOC to BPEL4WS, etc. [3]. They are
still at a fairly low level, but they are very promising when considered from the
MOF/QVT perspective.

We also supposed the existence of formal operations (≤) and tools for check-
ing the substitutability of two specifications. The situation is easy at the struc-
ture level, since this implies just common subtyping of interfaces. However, there
is much work to be done at the behavior or choreography levels, for which only
a limited set of operators and tools exist (basically, the works by Gary Leavens
on Larch [9], and the works by Carlos Canal et al. for choreography [6]).

Finally, there is also plenty of work to do with regard to the (semi)automated
derivation of software adaptors (e.g., wrappers) that resolve the potential mis-
matches found by the substitutability tests. There are some initial results only,
but most of the problems seem to be unsolved yet: defining distances between
specifications [11], deciding about the potential existence of a wrapper that re-
solves the mismatches, generating the wrappers at the different levels, etc.

Acknowledgements. The authors would like to thank the anonymous ref-
erees for their helpful comments and remarks. This work has been supported by
Spanish Research Project TIC2002- 04309-C02-02.

References

1. K. Arnout and B. Meyer. Finding implicit contracts in .NET components. In
Formal Methods for Components and Objects (First International Symposium,
FMCO 2002), no. 2852 in LNCS, pp. 285–318, 2003. Springer-Verlag.

2. M. F. Bertoa, J. M. Troya, and A. Vallecillo. A survey on the quality information
provided by software component vendors. In Proc. of the 7th ECOOP Workshop
on QAOOSE, pp. 25–30, Germany, 2003.

3. J. Bézivin, S. Hammoudi, D. Lopes, and F. Jouault. An experiment in mapping
web services to implementation platforms. Reserach Report 04.01, University of
Nantes, 2004.

4. A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation.
Journal of Systems and Software, Special Issue on Automated Component-Based
Software Engineering, 2004.

5. A. Brogi, C. Canal, E. Pimentel and A. Vallecillo. Formalizing web services
choreographies. In Proc. of the 1st Intl. Workshop on Web Services and Formal
Methods (WS-FM’04), vol. 86 of ENTCS, pp. 1–20, Italy, 2004. Elsevier.

6. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
CORBA objects. IEEE Trans. Softw. Eng., 29(3):242–260, 2003.

7. J. Cheesman and J. Daniels. UML Components. A simple process for specifying
component-based software. Addison-Wesley, 2000.

8. ITU-T. SDL: Specification and Description Language. Intl. Telecommunications
Union, Switzerland, 1994. ITU-T Rec. Z.100.

9. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems, pp. 175–188. Kluwer
Academic Publishers, 1999.

10. A. McNeile and N. Simons. Methods of behaviour modelling, 2004.
http://www.metamaxim.com/download/documents/Methods.pdf.

11. R. Mili, J. Desharnais, M. Frappier, and A. Mili. Semantic distance between
specifications. Theoretical Comput. Sci., 247:257–276, 2000.

12. J. Miller and J. Mukerji. MDA Guide. Object Management Group, 2003. OMG
document ab/2003-05-01.

13. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115–117, 2001.

14. A. Vallecillo, J. Hernández, and J. M. Troya. New issues in object interoperability.
In Object-Oriented Technology: ECOOP 2000 Workshop Reader, no. 1964 in
LNCS, pp. 256–269. Springer-Verlag, 2000.

