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TARGET RETURNS WITHIN RISK PROGRAMMING
MODELS: A MULTI-OBJECTIVE APPROACH

J. Berbel*

An approach to deal with risk in agricultural planning with a safety-
first model is presented. The approach, named mean-partial absolute
deviation (mean-PAD), is aimed at improving existing safety-first
methods by combining an accurate estimation of the probability of
failure with multiobjective programming. The logic of the method is
explained by a simple example. Although the mean-PAD approach
is a multiobjective technique by nature, it can be made operational by
using common linear programming codes.

Introduction

The best-known risk-return model is the mean-variance (E-V) analysis, first
proposed by Markowitz (1952), wherein risk is measured as the variance and
return as the mean. Some shortcomings of the E-V analysis are discussed in
Holthausen (1981), Fishburn (1977) and Tauer (1983§. They argue that
variance is an inappropriate measure of risk because decision-makers are
interested in ‘downside-risk’ or in the probability of not achieving a minimum
target.

The use of safety-first (SF) models, of the lexicographic type, is a common
approach to risk return analysis. A review of alternative formulations of risk
constraints in a Linear Programming (LP) model is found in Kennedy and
Francisco (1974). The SF approach assumes that the probability of not
achieving some critical value of gross margin is a crucial element together with
the expected outcome of the decision. Three variants are suggested: (1)
minimising the probability of failure subject to a target level of the gross
margin; (2) maximising the critical low value of gross margin subject to a
specified probability; (3) maximising gross margin subject to some probability
of attaining a certain target.

All the SF methods require probability estimates for the lower tail of the
relevant distribution. Commonly, this is the probability of returns not
achieving a predetermined ‘disaster level” which can be estimated by using the
Tchebyschev inequality:
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Pr[ | x-E(x) | >ks] < I/k2 (1)

where E(x) is the expected value of returns, s is the standard deviation, and k is
a factor which will determine the probability limit.

The probability bounds obtained by using (1) are highly conservative. When
the distribution is known, this probability of failure can be determined more
accurately. However, in a farm planning context, it is more realistic to treat the
probability distribution as unknown.

Berck and Hihn (1982) introduced a less conservative inequality, based on
the semi-standard deviation s~ (square root of the semi-variance):

Pr[ | x-E(x) | >ks™] < l/k2 )

Atwood (1985) proposes the use of lower-order partial moments to improve
the results of the generalised semi-variance inequality (2) and shows that this
inequality can be generalised to:

Pr(x<g) = Pr[x<t—pQ(k,t)] < 1/pk (3)

where g=safety level threshold; t=auxiliary parameter to estimate probability
of failure (t>g); p=parameter (positive) and Q(k,t)=k —th root of the moment
of order k below t, which is defined as follows:

1
Q(k.t)= f (t—x)f(x)dx | 4)

The Mean-PAD Model

Atwood shows that for three different distribution functions (normal, gamma
and non-standardised beta), the probability of failure can be improved greatly
by using lower partial moments.

The selection of an appropriate level for t can be difficult in applied research.
Atwood proposes a method whereby the least constraining level for t can be
selected endogenously by solving a LP model.

The first moment for t, Q(1,t), is easily incorporated into a LP model. The
inequality (3) can be particularised for k=1, to estimate the probability of
failure. We define gin (3) as follows:

g=t=[p"Q(k1)] (5)
p can be obtained from (5) as:

p=(t-g)/Q(k.) (6)
If we substitute (6) into (3), the resultis:

Pr(x<g) <[Q(k,t)/(t—g)]* (7)
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and we can work with expression (7), which, for k=1, can be included in a
linear programme as:

Pr(x<g) < Q(1.)/(t—g) (8)

Inequality (8) can be derived using only the definition of partial moment so
that Atwood’s inequality is not required as shown in the Appendix. We will call
Q(1,t) the Partial Absolute Deviation or PAD; this concept is the basis of the
proposed model.

Risk Programming Methods

Barry and Robinson (1975) argue that all the mean-variance approaches
implicitly use the Tchebyschev inequality (1) because the decision-maker does
not want to minimise variability and the critical parameter is the associated
probability of failure. We can extend this argument to all the risk programming
approaches.

The main risk-return programming approaches use the mean and a moment
associated to risk. This moment Q(k,t) can be classified depending on two
parameters: the order k and the level t from which deviations are measured.
This point t can be a predetermined value or the mean value. Different risk-
return programming approaches treat this as: MOTAD (t=mean, k=1)
(Hazell, 1971); target MOTAD (t<mean, k=1) (Tauer, 1983); mean-
semivariance (t=mean, k=2) (Markowitz, 1968) and mean-partial squared
deviations (t<mean, k=2) (Porter, 1974). The mean variance approach
(Markowitz, 1952) is not included because variance is not a moment Q(k,t).

As Fishburn demonstrated, the efficient set generated with Q(k,t) of which
target MOTAD is a particular case is a subset of the second stochastic
dominance criterion. This characteristic and the fact that target MOTAD can
be included in a LP makes the model particularly suitable for agricultural
planning.

We may combine this model and the Atwood inequality. This is the basis of
the mean-PAD model. Instead of the moment Q(1,t) or PAD, we can work
with the probability of failure estimated by (8). If we proceed by this method, t
must be fixed and it should be at least as large as g (safety level). When t (the
parameter from which deviations are measured) approximates g, the fraction
Q/(t—g) tends to infinity so that the probability limit is unbounded.

In our model. the second objective is to minimise the probability of failure,
but this criterion is equivalent to the objective of minimising PAD. The
probability of failure is computed by (9), which comes from (8) by substituting
Q(1.t) for (PAD/m) with m equal to number of years or considered periods:

Pr(x<g) < PAD/m(t—g) (9)

It is important to remember that in Tauer’s work t is regarded as the critical
value. However, in the SF version. g is crucial and t is only a required
parameter.

Risk-Return in a Multiple Objective Context

Multiple Criteria Decision-Making (MCDM) techniques deal with problems in
which more than one criterion is simultaneously considered. Within the
MCDM paradigm. one of the most promising approach to deal with risk is
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Multiobjective Programming (MOP). These techniques deal with the
simultaneous optimisation of several objectives subject to a set of constraints.
As the optimum cannot generally be attained simultaneously with different
objectives, MOP tries to develop the efficient or nondominated set.

The elements of an efficient set are feasible solutions and must be such that
there are no other solutions that can achieve the same or better performance
for all the objectives and strictly better for at least one objective (Romero and
Rehman, 1984).

MOP has not been used extensively in farm planning. Hitchens et al. (1978)
analyse the trade-offs between monetary profits and ecological aspects in
regional planning in Australia. Vedula and Rogers (1981) applied a similar
model in India to the conflict between profits and total irrigated area. Romero
et al. (1987) use the MOP approach to deal with an agricultural planning
problem within an agrarian reform programme in Spain.

The risk-return analysis is based on a two-criteria model, in which the first
criterion is the expected value and the second criterion is the probability of
failure or the associated PAD. The method tries to develop the efficient set in
the two criteria space. The structure of the mean-PAD modelis:

Eff (GM,PAD)
GM = Gn?( (10)
PAD = 2 Pr(i) N(i)
subject to:
AX=<b
SHX+N(@)=t fori=1,...,m

where Eff means the efficient set, A=matrix of technical coefficients, GM=
gross margin, G=vector of expected gross margins per unit of activity level,
X=vector of activity levels, PAD=probability-weighted sum of negative
deviation from t for the m years (states of nature), S(i)=vector of gross margin
for the m years (states of nature), N(i)=vector of negative deviations, and tis a
parameter (scalar).

The efficient set or trade-off curve can be developed by several methods:
weighting, constraint, Simplex Multicriteria and Non-Inferior Set Estimation
(NISE). A detailed explanation of these methods can be found in Cohon et al
(1978). The constraint method optimises one objective while the other is
treated as a restraint. Parameterising the right-hand sides of the constraint
inequalities, the efficient set is approximated. Within a target MOTAD
context, both Tauer and Watts er al (1984) use this technique. In fact, they
maximise returns while parametrically varying the upper limit on deviations.

A Numerical Illustration

To illustrate some of the concepts discussed above, the mean-PAD model is
applied to a small numerical example. Let us assume a 200-hectare farm with
four activities and six maximum-type constraints: available area, hours of
labour and rotational constraints.

Table 1 presents the tableau of real activities and constraints. The PAD row
will give the sum of deviations. In our example, if we assume that the
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probability of each state of nature is equal to 1/m, we get the first-order
moment if we divide PAD by the number of years m (see (9)). The first two
rows have a ‘Free RHS’ which means that they are unconstrained rows (i.e.
objectives). The safety level assumed is g=20,000.

Tablel Mean-PAD Model for the Example Problem

Rowand Unit Nle: - X2 - - X3 O X¢=: NI N2 N3 N4 N5 RHS
Mean GM ($) 100 95 140 136 FREE
PAD($) 1 1 1 1 1 FREE
Year 1($) 120 100 75 150 1 =t
Year2($) 110 95 175 100 1 =t
Year3($) 100 90 200 70 1 =t
Year4 33 90 100 100 160 1 =t
Year5($ 80 100 150 200 1 =t
Area (ha) 1 1 1 1 =200
Labour (hours) =05 1.6 2 =300
Rotation ha; 1 <100
Rotation (ha 1 <100
Rotation hag 1 <100
Rotation (ha 1 =100

Table 2 and the curve in Figure 1 show the trade-offs between risk (measured
as the probability of failure) and expected gross margin. The lower value of t
which generates non-dominated solutions 1s t=23,445 as can be found by a
parametric analysis of t. We choose a value of t=23,800 as the parameter from
V¥1}'1iCh 1deviations are measured. Table 2 is the efficient set generated by using
this value.

Table2 Extreme Efficient Points

Point Gross Margin (GM) PAD Pr(GM <20,000)
A 24.945 738 3.88%
B 25.480 1.321 6.95%
© 25.892 3.019 15.89%
D 25.960 3.500 18.42%

A parametric analysis of t can be carried out as in Watts et al., by generating
an efficient set for each t. This analysis shows that the different sets have most
of the points in common.

The probability of failure, estimated by (9), is computed for each extreme
efficient point in our example. We show that by applying it to point A in Figure
1, the probability of failure at this pointis:

Pr [x<20,000] < 738/[5*(23,800—20,000)] = 3.88% (11)

where g=20,000; t=23,800; m=number of years (m=5) and PAD=738.
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Figurel Mean-PAD Efficient Set (t=23,00)
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We have generated the efficient set, which is the aim of MOP techniques, but
some authors consider that this is only the first stage in the solution of a
multiobjective problem (Rehman and Romero, 1985). The decision-maker
may be interested in obtaining a definite solution. In that case we may tackle
the second stage by Compromise Programming (Zeleny, 1982) or resorting to
some interactive techniques (see Cohon, 1978).

The trade-offs between the mean gross margin and the probability of failure
or the associated PAD are established. It is not very interesting to carry out a
parametric analysis of g because that will not have a very intuitive meaning to
the decision-maker. The value of g (disaster level) is fixed exogenously and
depends on the particular conditions of the decision maker. Parameter tis fixed
by the analyst in order to estimate the probability of failure.

The lower limit on the parameter t is g and the selected value of t should
always generate a positive moment to avoid dominated solutions whichever is
more restrictive. The upper limit on t is the value of the profit-maximising
solution. Atwood (1985) proposes a method to determine t endogenously.

For an application of the mean-PAD method to a real decision-making
problem for various types of family farm in the horticultural sector, see Berbel
(1986, 1987). The complete model includes income, risk, leisure, and seasonal
labour. The results show that this method can be a useful tool in applied farm
planning.

Conclusions

The analysis of risk should be carried out in a multiobjective context by
studying the trade-offs between risk and return. Generally return is measured
as the expected income and risk as some statistical moment which measures
variability. Some authors prefer to measure risk as probability of failure or any
measure of ‘downside risk’.
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In a Linear Programming context, the use of a mean-PAD model is proposed
as a better alternative to the MOTAD models. The use of inequalities for lower
partial moments can generate upper bounds to safety-first type probabilities.
This allows the substitution of variance or MOTAD parameters for a more
intuitive estimation of failure. The use of concepts such as probability of failure
of not achieving a desired target return will make the presentation of results
clearer thus improving the use of interactive techniques. An intuitive meaning
to decision-makers can make easier the use of interactive techniques.

If the analysis of risk-return conflicts is done on a multiple criteria basis, the
most suitable method for generating the risk-return trade-off curve can be
implemented and the best compromise solution obtained. The analysis of other
objectives such as leisure, environmental effects, etc. which may conflict with
safety and income should be introduced in any analysis of farm planning
problems.
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APPENDIX
DERIVATION OF ATWOOD’S INEQUALITY

The definition of the partial moment of order k respect to tis:

0 (k.t) = [ f (t-—x)kf(x)dx] (A=1)

We want to estimate the probability of the variable x with the distribution function f(x) falling
below a threshold level g:

g t
®(k,t)=|: J- (tx)kf(x)dx} +[ f (tx)kf(x)dxil (A-2)
_x g

The second integral of (A—2) is always positive for k=1 because the function (t—x) cannot be

negative. Thus we have:
3
Ok.t)= J- (t=x)% f(x) dx (A=3)

The greater value of (t—k) in the interval (—s,g) is (t—g), so:

g
(-)(k,t}z(t—g)kli f f(x) dx :I = (t—g)kPr(x<g) (A—4)
The integral is the probability of x falling below g. From (A—4), we get:

Pr(x<g) < © (k.)/(t—g) (A-5)

If we use the first moment with respect to t [0(1,t)], and we call it Partial Absolute Deviation, we
obtain:

Pr(x<g) <PAD/(t—g) (A—6)



