Publications

Go to list of publications on GoogleSchoolar

Go to list of publications on ResearcherID

Go to list of publications on SciVerse-Scopus

Go to list of publications on ResearchGate

Go to list of publications on DBPL

  • Journal Articles:
    • C. Romero, S. Ventura. Educational data science in massive open online courses. WIREs Data Mining Knowledge Discovery 2017, 7(1), 1-12.
    • J. M. Luna, C. Castro, C. Romero. MDM Tool: A Data Mining Framework Integrated Into Moodle. Computer Applications in Engineering Education. 2017, 25(1), 90-102.
    • C. Marquez, C.Romero, A.Cano. S.Ventura. Early Dropout Prediction using Data Mining: A Case Study with High School Students. Expert Systems. 2016. 33(1): 107-124.
    • J.L. Olmo, C.Romero, E.Gibaja, S.Ventura. Improving Meta-learning for Algorithm Selection by Using Multi-label Classification: A Case of Study with Educational Data Sets. International Journal of Computational Intelligence Systems. 8(6):1144-1164, 2015
    • C. Romero. S. Ventura 2015. Larusson, J.A., White, B. (eds): Learning Analytics: From Research to Practice. Technology, Knowledge and Learning. 20:357-360, 2015.
    • A. Zapata, V. H. Menéndez, M.E. Prieto, C. Romero. Evaluation and Selection of Group Recommendation Strategies for Collaborative Searching of Learning Objects. International Journal of Human-Computer Studies. 76:22-39, 2015.
    • T.Y. Tang, B.K. Daniel, C. Romero. Recommender systems for and in social and online learning environments. Expert Systems. 32(2):261-263, 2015.
    • J.M. Luna, , J.R. Romero, C. Romero, S. Ventura. An Evolutionary Algorithm for the Discovery of Rare Class Association Rules in Learning Management Systems. Applied Intelligence. 42:501-513, 2015.
    • J.M. Luna, , J.R. Romero, C. Romero, S. Ventura. Mining Optimized Quantitative Association Rules by using a Genetic Programming Free-parameter Algorithm. Integrated Computer-Aided Engineering. 21:321-337, 2014.
    • J.M. Luna, , J.R. Romero, C. Romero, S. Ventura. On the Use of Genetic Programming for Mining Comprehensible Rules in Subgroup Discovery. IEEE TRANSACTIONS ON CYBERNETICS. 44(12):2329-2341, 2014.
    • J.M. Luna, , J.R. Romero, C. Romero, S. Ventura. Reducing gaps in quantitative association rules: A genetic programming free-parameter algorithm. Integrated Computer-Aided Engineering. 21: 321-337, 2014.
    • C. Romero, R. Baker. A Review of Classroom Assessment in Action. American Journal of Psychology, 127(1), 134-136. 2014.
    • S. Ventura, C. Romero, A. Abraham. Foreword: Intelligent data analysis, Journal of Computer and System Sciences, Num. 80:1–2. 2014.
    • C. Romero, M.I. Lopez, J.M. Luna, S. Ventura, Predicting students' final performance from participation in online discussion forums. Computers&Education. Num. 68: 458–472, 2013.
    • J.C. Krzysztof, C. Romero, J.M. Benitez, F. Marcelloni. Introduction. Integrated Computer-Aided Engineering. Vol. 20(3):199-199, 2013.
    • C.Romero, A. Zafra, J.M. Luna, S. Ventura. Association rule mining using genetic programming to provide feedback to instructors from multiple-choice quiz data. Expert Systems: The Journal of Knowledge Engineering. Vol.30(2): 162–172, 2013.
    • A. Zafra, C. Romero, S. Ventura. DRAL: A Tool for Discovering Relevant e-Activities for Learners. Knowledge and Information Systems (KAIS). Vol. 36:211–250. 2013.
    • C. Marquez-Vera, A. Cano, C. Romero, S. Ventura. Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Applied Intelligent. Vol. Vol. 38(3):315-330. 2013.
    • C. Marquez-Vera, C. Romero, S. Ventura. Predicting School Failure and Dropout by Using Data Mining Techniques. IEEE Rita. Vol. 7(3):109-117. 2013.
    • C. Romero, P.G. Espejo, A. Zafra, J.R. Romero, S. Ventura. Web Usage Mining for Predicting Final Marks of Students that Use Moodle Courses. Computer Applications in Engineering Education journal. Vol. 21:135-146, 2013
    • A. Zapata , V. H. Menéndez, M.E. Prieto, C. Romero. A Framework for Recommendation in Learning Object Repositories: An Example of Application in Civil Engineering. Advances in Engineering Software. Vol. 56, 1-14, 2013
    • C.Romero, S. Ventura. Data Mining in Education. WIREs Data Mining and Knowledge Discovery. John Wiley & Sons. Vol. 3:12-27. 2013.
    • C. Romero. S. Ventura. Preface to the Special Issue on Data Mining for Personalised Educational Systems. User Modeling and User-Adapted Interaction. Springer. Vol.21, Num. 1-2, Pp. 1-3, 2011.
    • C. Romero, J.M. Luna, J.R. Romero, S. Ventura. RM-Tool: A framework for discovering and evaluating association rules. Advances in Engineering Software. Vol 42. Pp. 566-576, 2011.
    • A. Zapata, V.H. Menendez, M. E. Prieto, C. Romero. A Hybric Recommender Method for Learning Objects. International Journal of Computer Applications. Number 1. Pp. 1-7. 2011.
    • A. Zafra, C. Romero, S. Ventura. Multiple Instance Learning for Classifying Students in Learning Management Systems. Expert Systems With Applications. Vol. 38. Pp. 15020-15031, 2011.
    • E. García, C. Romero, S. Ventura, C. de Castro. A collaborative educational association rule mining tool. Internet and Higher Education. Special Issue Web Mining and Higher Education, Vol 14. Issue 2, pp. 77–88, 2011.
    • C. Romero, S. Ventura. Educational Data Mining: A Review of the State-of-the-Art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews. Issue 6, pp.601 - 618, 2010.
    • C. Romero, S. Ventura, A. Zafra, P. de Bra. Applying Web Usage Mining for Personalizing Hyperlinks in Web-based Adaptive Educational Systems. Computer&Education. Volume 53, Issue 3, Pages: 828-840. 2009.
    • A. Zafra, C. Romero, S. Ventura, E. Herrera-Viedma. Multi-Instance Genetic Programming For Web Index Recommendation. Expert Systems With Applications. Vol. 36. Pag. 11470-1147. 2009.
    • E. García, C. Romero, S. Ventura, C. de Castro.An architecture for making recommendations to courseware authors through association rule mining and collaborative filtering. User Modelling and User Adapted Interaction. Vol. 19. Num. 1-2. Pages: 99-132. 2009.
    • E. Garcia, C. Romero, S. Ventura, C. Castro. Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. IEEE Rita: Revista Iberoamericana de Tecnologías del Aprendizaje. Vol. 3. Num 1. Mayo 2008. Pag. 19-30.
    • C. Romero, S. Ventura, P. de Bra. Using Mobile and Web-based computerized tests to evaluate university students. Computers Applications in Engineering Education. John Wiley & Sons. Volumen 17, Issue 4, pages 435-447. 2009.
    • J. Alcalá, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas and F. Herrera. KEEL: A data mining software tool for assessing the performance of knowledge extraction-based on evolutionary algorithms. Soft Computing, Vol 13. Pages: 307-318. 2009.
    • C. Romero, S. Ventura and E. García. Data Mining in Course Management Systems: MOODLE Case Study and Tutorial. Computers and Education, 2007. Num. 51. pp. 368-384.
    • S. Ventura, C. Romero, A. Zafra, J.A. Delgado and C. Hervás. JCLEC: A Java Framework for Evolutionary Computation. Soft Computing, 2007. 12 (4) pp. 381-392..
    • C. Romero and S. Ventura. Educational Data Mining: A Survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146, 2007.
    • P.G. Espejo, C. Hervás, S. Ventura and C. Romero. Eleccion de Operadores Lógicos para la Inducción de Conocimiento Comprensible. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 29,19-30, 2006.
    • C. Romero, S. Ventura, E. Gibaja, C. Hervás and F. Romero. Web-Based Adaptive Training Simulator System for Cardiac Life Support. Artificial Intelligence in Medicine, 38(1), 67-78, 2006.
    • C. Romero, S. Ventura, C. Hervás and P. González. Rule Discovery in Web-Based Educational Systems Using Grammar-Based Genetic Programming. WIT Transactions on Information and Communication Tecnologies, 35, 205-214, 2005.
    • C. Romero, S. Ventura, C. de Castro and E. García. Algoritmos Evolutivos para el Descubrimiento de Reglas de Predicción en la Mejora de de Sistemas Educativos Basados en Web. RELATEC (Revista Latinoamericana De Tecnología Educativa), 2, 1-12, 2005.
    • C. Romero, S. Ventura and P. de Bra. Knowledge Discovery with Genetic Programming for Providing Feedback to Courseware Authors. User Modelling and User Adapted Interaction, 14(5), 425-464, 2004.
    • C. Romero, S. Ventura, C. de Castro and E. García. Herramienta Autor INDESAHC Para La Creación de Cursos Hipermedia Adaptativos. RELATEC (Revista Latinoamericana De Tecnología Educativa), 1, 349-367, 2004.
    • C. Romero, C. de Castro and S. Ventura. Construcción de Cursos Hipermedia Adaptativos Basados En Web Utilizandoa AHA. Revista Iberoamericana de Educación a Distancia, 5(2), 99-116, 2002.
  • Contributions to International Conferences:
    • P. González, E. Gibaja, A. Zapata, V. H. Menéndez, C. Romero. Towards Automatic Classification of Learning Objects: Reducing the Number of Used Features, EDM 2017. 1-2.
    • A. Zapata, V.H. Menéndez, C. Romero, M.E. Prieto. Meta-learning for predicting the best vote aggregation method: Case study in collaborative searching of Los. EDM 2016. 656-657.
    • C. Romero, R. Cerezo, J.A. Espino, M. Bermudez. Using Android Wear for Avoiding Procrastination Behaviours in MOOCs. L@S 2016. Edimburgo, 193-196.
    • Bogarin, A., Romero, C., Cerezo R. 2015. Discovering student's navigation path in moodle. International Conference on Educational Data Mining, Madrid, Spain, 556-557. 2015.
    • M.A. Jiménez-Cómez, J. M. Luna, C. Romero, S. Ventura. Discovering Clues to Avoid Middle Shool Failure as Early as Possible. Learning Analytics and Knowledge Conference, NY, USA. 300-305. 2015.
    • Fuentes, J., Romero, C., García-Martínez, C., Ventura. S. Accepting or Rejecting Students’ Self-grading in their Final Marks by using Data Mining. International Conference on Educational Data Mining, London, UK, 327-328. 2014.
    • Bogarin, A., Romero, C. Cerezo, R. Sanchez-Santillan, M. Clustering for improving Educational Process Mining. Learning Analytics and Knowledge Conference 2014. Indianapolis, USA, Pp. 11-15, 2014.
    • C.Romero, C.Castro, S.Ventura. A Moodle Block for Selecting, Visualizing and Mining Students' Usage Data. 6th International Conference on Educational Data Mining, Memphis, TN, USA, 400-401, 2013.
    • C. Romero, J.L. Olmo, S. Ventura. A meta-learning approach for recommending a subset of white-box classication algorithms for Moodle datasets. 6th International Conference on Educational Data Mining, Memphis, TN, USA, 268-271. 2013
    • J. M. Luna, J. R. Romero, C. Romero, and S. Ventura. Discovering Subgroups by Means of Genetic Programming. 16th European Conference on Genetic Programming, Vienna, Austria. pp. 121–132, 2013
    • Molina, M.M., Romero, C. Luna, J.M. Ventura. S. Meta-learning approach for automatic parameter tuning: A case study with educational datasets. 5th International Conference on Educational Data Mining, pp. 180-183, 2012.
    • Lopez, M.I., Luna, J.M., Romero, C., Ventura. S. Classification via clustering for predicting final marks starting from the student participation in forums. 5th International Conference on Educational Data Mining. pp. 148-151. 2012.
    • Luna, J.M., Romero, J.R., Romero, C. Ventura. S., A Genetic Programming Free-Parameter Algorithm for Mining Association Rules. Jose Maria Luna, Jose Raul Romero, Cristobal Romero, Sebastian Ventura. ISDA 2012. Chania, India. International Conference on Intelligent Systems Design and Applications. pp. 64-69, 2012.
    • V.H. Menendez-Dominguez, A. Zapata, M.E. Prieto-Mendez, C. Romero, J. Serrano-Guerrero. A similarity-based approach to enhance learning objects management systems. ISDA 2011 11th International Conference on Intelligent Systems Design and Applications. Pp- 996-1001, 2011.
    • C. Marquez-Vera, C. Romero, S. Ventura. Predicting School Failure Using Data Mining. International Conference on Educational Data Mining. Pag. 271-275, 2011.
    • R. Pedraza, C. Romero, S. Ventura. A Java desktop tool for mining Moodle data. International Conference on Educational Data Mining. Pag. 319-320, 2011.
    • A. Zapata, V.H. Menéndez-Dominguez, M. Prieto-Mendez, C. Romero. Using data mining in a recommender system to search for learning objects in repositories. International Conference on Educational Data Mining. Pag. 321-323, 2011.
    • C. Romero, S. Ventura, E. Vasilyeva, M. Pechenizkiy. Using Class Association Rules over Students’ Test Data. International Conference on Educational Data Mining. Pittsburgh, PA, USA. Pp. 317-318. 2010.
    • C. Romero, J.R Romero, J. M. Luna, S. Ventura. Mining Rare Association Rules from e-Learning Data. International Conference on Educational Data Mining. Pittsburgh, PA, USA. Pp. 171-180. 2010.
    • C.J. Carmona, P. González, M.J. del Jesus, S. Ventura, C. Romero. Evolutionary algorithms for subgroup discovery applied to e-learning data. IEEE EDUCON Education Engineering, Madrid. Page 1-7. 2010.
    • A. Zafra, C. Romero, S. Ventura. Predicting Academic Achievement Using Multiple Instance Genetic Programming. Workshop EDM en ISDA’09 IEEE Ninth International Conference on Intelligent Systems Design and Applications. Pisa. Italia. pp. 1120-1125. 2009.
    • C. Romero, S. Ventura, E. García, C. de Castro, M. Gea. Collaborative Data Mining Tool for Education. EDM’09. 1-3 Julio, Córdoba. Pag. 299-306. 2009.
    • E. García, C. Romero, S. Ventura, C. de Castro. Evaluating web based instructional model using association rule mining. UMAP 2009. 22-26 June. Trento, Italy. LNCS 5535. Pp. 16-29. 2009.
    • C. Romero, S. Ventura, P. Espejo, C. Hervas. Data mining algorithms to classify students. Educational Data Mining Conference EDM 2008. Montreal. Junio 20-21. Pag. 182-185.
    • S. Ventura, C. Romero, C. Hervás. Analyzing rule evaluation measures with educational datasets: A framwork to help the teacher. Educational Data Mining Conference EDM 2008. Montreal. Junio 20-21. Pag. 182-185.
    • C. Romero, S.Guiterrez, M. Freire, S. Ventura. Minig and visualizing trails in Web-based educational systems. Educational Data Mining Conference EDM 2008. Montreal. Junio 20-21. Pag. 182-185.
    • A. Zafra, S. Ventura, E. Herrera-Viedma and C. Romero. Multiple Instance Learning with Genetic Programming For Web Mining. 9th International Work-Conference on Artificial Neural Networks (IWANN 2007). S. Sebastian (Spain), 2007.
    • E. García, C. Romero, S. Ventura y T. Calders. Drawbacks and solutions of applying association rule mining in learning management systems. International Workshop on Applying Data Mining in e-learning (ADML'07). Crete (Greece), 2007.
    • C. Romero, S. Ventura, J.A. Delgado and P. de Bra. Personalized Links Recommendation Based On Data Mining in Adaptive Educational Hypermedia Systems. Second European Conference on Technology Enhanced Learning (EC-TEL 2007). Crete (Greece), 2007.
    • E. García, C. Romero, S. Ventura, and C. de Castro. Using Rules Discovery For The Continuous Improvement of e-learning Courses. Seventh International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2006). Burgos (Spain), 2006.
    • C. Romero, S. Ventura and C. Hervás. Sistema Adaptable para la ejecución de Tests Informatizados en Teléfonos Móviles. II Congreso Iberoamericano sobre Computacióm Ubícua (CICU 2006). Madrid (Spain), 2006.
    • C. Romero, S. Ventura and C. Hervás. AHA! Meets SCORM. IADIS International Conference. Applied Computing 2005. Algarve (Portugal), 2005.
    • P. González, C. Romero, S. Ventura and C. Hervás. Induction of Classification Rules with Grammar-Based Genetic Programming. Second International Conference on Machine Intelligence (ACIDCA-ICMI 2005). Tozeur (Tunis), 2005.
    • C. Romero, S. Ventura, C. Hervás and P. de Bra. Extending AHA!: Adding Levels, Data Mining, Tests and SCORM to AHA!. Fifth International Conference Human Systems Learning. Marrakesh (Morocco), 2005.
    • C. Romero, P. de Bra, S. Palomo and S. Ventura. An Authoring Tool for Web-Based Adaptive and Classic Tests. AACE ELEARN'2004 conference. Washington DC (USA), 2004.
    • C. Romero, S. Ventura and C. de Castro. Herramienta para el Descubrimiento de Reglas de Predicción en Educación Basada en Web. V Congreso Internacional De Interacción Persona Ordenador. Lleida (Spain), 2004.
    • C. Romero, S. Ventura and C. de Castro. Sistema de Desarrollo Integrado para Cursos Hipermedia Adaptativos (INDESHAHC). V Congreso Internacional De Interacción Persona Ordenador. Lleida (Spain), 2004.
    • C. Romero, S. Ventura, C. Hervás and P. González. Rule Discovery in Web-Based Educational Systems using Grammar-Based Genetic Programming. Fifth International Conference On Data Mining. Málaga (Spain), 2004.
    • C. Romero, S. Ventura, C. de Castro and P. de Bra. Discovering Prediction Rules In AHA Courses!. User Modeling 2003. Pittsburg (USA), 2003.
    • C. Romero, S. Ventura and C. de Castro. Herramienta Autor para la Construcción de Cursos Hipermedia Adaptativos Utilizando AHA. IV Congreso Internacional de Interacción Persona-Ordenador. Vigo (Spain), 2002.
    • C. Romero, S. Ventura, C. de Castro and P. de Bra. Using Knowledge Levels with AHA for Discovering Interesting Relationships. World Conference E-Learn 2002. Toronto (Canada), 2002.
    • C. Romero, S. Ventura and C. de Castro. Using Genetic Algorithms for Data Mining in Web-Based Educational Hypermedia Systems. Adaptive Hypermedia and Adaptive Web-Based Systems (AH02). Málaga (Spain), 2002.
    • C. Romero, F. Vazquez, S. Ventura and C. de Castro. Internet Based Control Systems. Internet Based Control Systems. Madrid (Spain), 2002.
  • Books chapters:
    • C.Romero, R.Cerezo, A.Bogarín, M.Sánchez-Santillán. Educational Process Mining: A tutorial and case study using Moodle data sets Handbook of Data Mining and Learning Analytics. Wiley Series on Methods and Applications in Data Mining. Editors: S. ElAtia, O.R. Zaiane, Wiley, 2016, Pag. 3-28.
    • C.Romero. Foreward. Big Data and Learning Analytics: Current Theory and Practice in Higher Education. Editor: Ben Daniel. Springer. 2016, 10-11
    • C.Romero, J.R. Romero, S.Ventura. A Survey on Pre-processing Educational Data. Educational Data Mining: Applications and Trends, Springer Series Studies in Computational Intelligence. Editor: Alejandro Peña-Ayala. Volume 524, pp 29-64, 2014
    • A. Zafra, C. Romero. S. Ventura. Classify students with Multiple-Instance Learning. Handbook of Educational Data Mining. Chapman and Hall/CRC Press, Taylor & Francis Group. Pages 187-200. 2010.
    • E. Garcia, C. Romero, S. Ventura, C. de Castro, T. Calders. Association Rule Mining in Learning Management Systems: Moodle. Handbook of Educational Data Mining. Chapman and Hall/CRC Press, Taylor & Francis Group. Pages 93-106. 2010.
    • C. Romero, S. Ventura, M. Pechenizkiy, R. Baker. Introduction. Handbook of Educational Data Mining. Chapman and Hall/CRC Press, Taylor & Francis Group. Pages. 1-8. 2010.
    • P. de Bra, N. Stash, D. Smits, C. Romero and S. Ventura. Authoring and Management Tools for Adaptive Educational Hypermedia Systems: The AHA! case study. En Evolution of Teaching and Learning Paradigms in Intelligent Environments, pp. 285-308. Springer, 2008.
    • C. Romero, S. Ventura, C. Hervás and P. González. Rule Discovery in Web-Based Educational Systems Using Grammar Based Genetic Programming. En Data Mining, Text Mining and Their Business Applications, pp 113-126. WIT Press, Essex (UK), 2005.
    • C. Romero, S. Ventura and C. Hervás. Descubrimiento de reglas de predicción en sistemas de e-learning usando Programación Genética. En R. Giráldez, J.C. Riquelme y J.S. Aguilar (Eds). Tendencias de la Minería de Datos en España. Red Española de Minería de Datos (TIC2002-11124-E), 2004.
    • C. Romero, S. Ventura and C. Hervás. Selección de medidas de evaluación de reglas obtenidas mediante Programación Genética Basada en Gramáticas. En R. Giráldez, J.C. Riquelme y J.S. Aguilar (Eds). Tendencias de la Minería de Datos en España. Red Española de Minería de Datos (TIC2002-11124-E), 2004.
  • Books:
    • Handbook of Educational Data Mining. C.Romero, S. Ventura, M. Pechenizky, R. Baker. Editorial Chapman and Hall/CRC Press, Taylor & Francis Group. Data Mining and Knowledge Discovery Series. ISBN 9781439804575, 2010.
    • Data Mining in e-learning. C. Romero y S. Ventura (eds.). Data Mining in e-learning. Advances in Management Information, Vol. 4. WIT Press. Wessex (UK), 2006. ISBN: 1-84564-152-3.
    • Programación en Lenguaje CLIPS.Editorial Ramón Areces. C. Romero, A. Calvo, P. Gonzalez, S. Ventura. ISBN: 84-8004-726-7. Pag. 294. 2005.
    • Domótica e Inmótica: Viviendas y Edificios Inteligentes. C. Romero, F. Vázquez, C. de Castro. Editorial Ra-ma. ISBN:84-7897-653-1. 2005. pag. 400.
    • Curso práctico para la obtención de la acreditación europea del manejo del ordenador. Editorial ANAYA-Multimedia. ISBN:84-415-1907-2. C. Romero, C. de Catro, S. Ventura, E. Garcia.  Page. 527. 2005.
    • Curso Básico de Java 1.2. C. Romero, C. de Castro, E. Lopez. Editorial: Publications Servirces Cordoba University and CajaSur. ISBN: 84-7801-591-4 2002
    • Curso Práctico de Unix. C. Romero, J. L. Cruz, S. Ventura. ISBN: 84-7959-300-8. Editorial: Publications Servirces Cordoba University and CajaSur. 1999.
    • Curso Práctico de Fortran 90. C. Romero, J. L. Cruz, S. Ventura. ISBN: 84-7959-338-5. Editorial: Publications Servirces Cordoba University and CajaSur. 2000.
    • Simulando con ACSL. C. Romero, F. Vazquez, C. de Castro. Editorial: Martínez Bernia y Asociados. Legal deposit: CO-311-2000. 2000.