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Abstract—The Internet of Things (IoT) is usually divided
in three layers: Edge, Fog, and Cloud layers. The whole IoT
infrastructure deals with large amount of data between layers.
Focusing on the Fog layer, the sending/receiving data and further
cascade processing of those data in the Fog layer enable the
Stream Processing paradigm. Thus, aspects such as the number
of connections, delays, buffer size, memory usage, among others,
have to be considered to optimize the network traffic. Moreover,
these characteristics are affected by uncertainty and imprecision
since, for example, the number of connections or the buffer size
may be considered low in some cases and high in others. Fuzzy
Rule-Based Systems (FRBS) are suitable for addressing complex
data and managing their imprecision. The objective of this paper
is to propose an approach that optimizes network traffic with the
main goal of dynamically and automatically adjusting the queue
buffer size in a node to avoid network collapse. The IEEE std
1855-2016 for Fuzzy Markup Language and the open source
library JFML are used for their flexibility and interoperability
offered by these technologies. The proposal has been simulated in
three basic different scenarios involving several network traffic
states in a fog infrastructure.

I. INTRODUCTION

Internet of Things (IoT) has enabled different devices to
share heterogeneous data between them without human actions
[1]. The architecture of IoT is usually considered to be 3 layer
approach: edge, fog and cloud. The edge layer represents the
things where heterogeneous and massively distributed devices
are present. The fog layer involves deploying computing
services at the edge of the network in order to improve the user
experience and service resilience in the event of failure [2],
and finally, the cloud layer encompasses the powerful Internet
servers.

Thanks to this architecture, large amounts of data are
sensed anywhere, anyplace, and anytime by means of IoT
over the different involved layers (edge, fog and cloud). In
consequence, the volume and type of data as network traffic is
increased. Focusing on data sending/reception between nodes

in the edge/fog layer, optimising the use of the network
resources has been a subject of scientific interest [3]–[7],
for which several aspects have to be considered due to the
heterogeneity [8].

In this context, the stream processing concept plays an
important role due to it takes action on a series of data at the
time the data is created. Stream processing often entails mul-
tiple tasks on the incoming series of data (the “data stream”),
which can be performed serially, in parallel, or both. This
workflow is referred to as a stream processing pipeline, which
includes the generation of the stream data, the processing
of the data, and the delivery of the data to a final location
[9]. When resources at the Edge are used, data is channelled
from the sources to the Cloud through chained processing
stages. These stages are distributed among the available nodes,
emerging networked pipeline structures [10]. The linear logic
of the pipelines, in which each node is a consumer of its
predecessor and a producer of its successor, gives rise to
congestion dynamics that inherit this linearity, in terms of
bottlenecks and chain delays [11]. As a consequence, in this
process, several characteristics directly related to the network
nodes have to be taken into account for the stream processing
due to when a node receives more data than it can handle,
congestion occurs. For example, the number of connections,
delays, buffer size, memory usage, etc. are aspects that are not
the same in each node and each time. Due to the linear nature
of the pipeline structure, where network traffic is cascaded,
the size of the receiving buffers of the nodes is a particularly
relevant parameter in flow control and decoupling dynamics.
Moreover, these characteristics are affected by uncertainty and
imprecision since, for example, the number of connections or
the buffer size may be considered small in some cases and big
in others.

On the other hand, Fuzzy Logic Systems (FLS), which
are rule-based expert systems based on fuzzy set theory to
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represent the semantics of rules and to process inference when
input data are provided [12], [13], have been successfully
used in a wide range of real-world problems. Concretely,
some traffic network approaches based on Fuzzy Systems
were found in previous literature [14]–[16]. In addition, FLS
have also been considered in stream processing architectures
to define expert systems to take data streams in input and
which outputs decisions on the fly [17]. FLS can include a
priori expert knowledge and represent systems for which it
is not possible to obtain a mathematical model. In this con-
text, the IEEE Computational Intelligence Society (IEEE-CIS)
has sponsored the publication of the new standard for FLS
(IEEE Std 1855-2016). This standard was established with
the main objective of providing the fuzzy community with a
unique and well-defined tool allowing a system to be designed
completely independently from the specific hardware/software.
The new standard defines a new W3C eXtensible Markup
Language (XML) based language, named Fuzzy Markup Lan-
guage (FML) [18] aimed at providing a unified and well-
defined representation of interoperable and interpretable FLS.
Additionally, in order to make the IEEE standard operative
and useful for the fuzzy community, the library JFML [19] has
been developed to offer a complete implementation of the new
IEEE standard as well as a module to integrate IoT solutions
into JFML [20]. Some developments based on JFML have also
been successfully done in different areas such as controller for
embedded systems [21], fall from height [22] or risk of falling
object accidents in the construction area [23], among others.

Therefore, the integration of FLS and FML technologies in
the management of the traffic network in stream processing
poses an interesting challenge that can provide significant
benefits for the network traffic in a Fog infrastructure. These
aspects have motivated the present work by the idea of defining
a preliminary approach which is able to manage the network
traffic with the main goal of dynamically and automatically
adjusting the buffer size on a node to avoid network collapses.
We propose to integrate support expert’s decision making in
the development of a smart node to manage stream data. To
do this, firstly, a panel of experts defines a set of rules for the
management of the queue buffer size, secondly, we represent
the FLS according to the IEEE std 1855-2016 where input
variables will be associated with the previously mentioned
variables (number of connections, time of delay, buffer size,
etc) and a set of fuzzy rules will be considered to model
five different buffer sizes: very small, small, medium, big and
very big. This solution will be implemented in nodes that will
integrate JFML and the defined FLS according to FML to
automatically adjust the node buffer size.

This paper is organized as follows. Section II provides some
preliminary concepts related to the Internet of Things, stream
processing and the JFML library. Section III describes the
approach for the optimization of the network traffic in stream
processing based on JFML. Section IV presents a study case to
show the applicability of the proposal in a simulation for dif-
ferent scenarios. Finally, the main conclusions are highlighted
in Section V.

II. PRELIMINARIES

In this section, firstly a brief introduction to the Internet of
Things and Stream Processing is presented. Secondly, some
concepts on network congestion in chained stages are also
shown. Finally, an overview of the main concepts related to
the IEEE std 1855-2016 and JFML are exposed.

A. Internet of Things and Stream Processing

Internet of Things (IoT) is a disruptive technology charac-
terized by the interconnection on a global scale of a dynamic
infrastructure of intelligent and self-configuring nodes (things).
IoT enables ubiquitous and pervasive computing scenarios
across heterogeneous devices with limited processing and stor-
age capacity [24]. The architecture of IoT is usually consid-
ered to be 3-layer approach, called Perception, Network, and
Application layers. Each one is characterized by a framework
of supporting technologies and devices. Perception layer is
also known as the sensor layer, is implemented as the bottom
layer in IoT architecture. The perception layer interacts with
physical devices and components through smart devices, and
it involves technologies such as RFID and (Wireless) sensor
networks (WSN). The network layer interconnects network
elements and provides Internet access. Finally, the application
layer guarantees confidentiality, integrity, and authenticity to
the data [25]. However, a different architecture emerges from
the challenge of integrating Cloud into the IoT universe.
In this architecture, the global infrastructure is divided into
three layers called Edge, Fog, and Cloud. The edge layer
represents the things: heterogeneous and massively distributed
devices. At the other extreme is Cloud, which encompasses the
powerful Internet servers. At the center of this scale is Fog, a
concept that aims to bring processing as close as possible to
IoT data generators and actuators [26]. The development of the
fog layer involves deploying computing services at the edge
of the network in order to improve the user experience and
service resilience in the event of failure. With the advantage of
distributed architecture and close to end-users, Fog Computing
can provide faster response and higher quality of service for
IoT applications [27].

On the other hand, Big Data uses billions of data acquired
usually from IoT to obtain useful knowledge to provide
enhanced decisions. Big Data is mainly carried out using
Cloud Computing technologies to centralize a wide variety of
services on powerful Internet servers. In this sense, IoT and
Cloud, opposite in terms of computing capacity, heterogeneity,
and distribution; complement each other in the vision of the
technological paradigm that is being developed. In this context,
large data flows must be processed constantly to obtain results
with very low latency and high performance per data. To
achieve this, computational processes have been subdivided
into consecutive stages in order to achieve segmented pro-
cessing, similar to that of pipelines. This methodology, called
Data Stream Processing, started in large Cloud processing
centers as a computational process [28]. However, due to the
expansion of the Internet of Things (IoT), the processing has
been approaching the Edge level, the level of data sources

Authorized licensed use limited to: UNIVERSIDAD DE CORDOBA. Downloaded on March 22,2023 at 15:08:54 UTC from IEEE Xplore.  Restrictions apply. 



or generators, deriving in what is known as Near Edge
Computing. In this case, the Stream Processing methodology
has also moved towards the Edge level, at the so-called Fog
level. This approach allows lower latencies, being closer to the
data sources, affecting the performance of the network due to
a large amount of data to be transmitted [29].

B. Network congestion dynamics in chained stages

In networks, when a node or link receives more data than
it can handle, congestion occurs. It can be defined as a
circumstantial degradation of quality of service (QoS) (in one
of its many aspects) and can present different levels of severity.
Both the shared medium and the node processors are limited
resources, so congestion is not something that can be avoided
when service demand exceeds certain limits. However, the
dynamics associated with congestion can be analysed to act
accordingly, for example: to provide extra resources to avoid
congestion; to manage a controlled degradation of service; or
to redistribute network workload [30].

Stream processing is a distributed computing paradigm
that addresses the challenge of processing data in the form
of endless streams. At the edge, data is channelled from
the sources to the Cloud through chained processing stages
which are distributed among the available nodes, emerging
networked pipeline structures [10]. In this scenario, the buffers
associated with the incoming traffic in each socket of each
node of the pipeline play a dual role: in addition to their
function in the communication protocols, they are decoupling
elements between stages, providing a temporary storage with
certain plasticity to mitigate the problems associated with
desynchronization and processing queues.

In relation to communication, when this buffer is too large,
the flow control mechanism is avoided, in the same way that
an oversized fuse would avoid electrical safety in a device.
This action is positive only if the network is so congested
that flow control is counterproductive. However, if this action
is not justified, an oversized buffer can lead to bufferbloat
effects [31], [32]. On the other hand, as a decoupling element,
the buffer size should be chosen according to the CPU and
storage load, as a temporary processing queue memory.

As it can be appreciated, the problem of appropriate buffer
size assignment involves a trade-off between several factors,
suggesting the potential advantage of using expert systems that
can effectively manage the imprecision of the magnitudes in-
volved in this logic with some knowledge based on experience.

C. IEEE std 1855-2016 and JFML

The IEEE std 1855-2016 [33] proposed the syntax of a
new language called Fuzzy Markup Language (FML). FML
was created to represent Fuzzy Logic Systems (FLS), and
specifically, Fuzzy Rule Based Systems (FRBS) in a human-
understandable language. This is possible because FML shares
the syntax with Extensible Markup Language (XML), an-
other famous human-readable language. Furthermore, FML
provides components to use various inference methods such
as AnYa [34], or well-known methods such as Tsukamoto

and Takagi-Sugeno-Kang (TSK) [35] and Mamdani [36]. In
addition to these features, FML improves the IEC 61131-
7 FCL [37] solving the limitation of proprietary formats
and making FLS or FRBS usable in other systems, such as
embedded systems.

However, the IEEE std 1855-2016 only introduced the FML
syntax and its elements, but there was no available a library
to design the FLS. For this reason, in 2018 an open-source
library was published to design FLS according to IEEE std
1855-2016 under the name of JFML [19].

JFML is a library implemented in Java, although it is
also available in Python 3.x through Py4JFML [38]. JFML
provides not only an implementation of IEEE std 1855-2016,
but also modules to import and export the generated FLS to
other widely used formats such as Predictive Model Markup
Language (PMML) or the format used by Matlab Fuzzy Logic
Toolbox among others. As this library is based on the FML
language, the five main components that define an FLS are
also present: fuzzy knowledge base; fuzzy rule base; inference
technique; fuzzification subsystem; defuzzification subsystem.
Also, due to the library’s package scheme, it is possible to
update the library’s functionality with the introduction of new
modules.

III. NODE DESIGN

In general, when a message arrives at a node, the thread
associated with the network card buffer wakes up and au-
tomatically queues that message in the decoupling buffer in
the nodes. Starting from this idea, a general design scheme
for the nodes to solve the problem of queue buffer size in
a Fog network is presented. The main elements for each
node included in this design are sensors/actuators, JFML
instance, and FML files representing expert knowledge for the
optimization in stream processing according to the IEEE std
1855-2016. A graphical representation of the node design and
fog architecture is shown in Fig. 1.

Fig. 1. General design for the nodes in a fog architecture
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The main elements for each node are described in the
following:

• Status: This element represents a sensor for reading the
status of the node: active or inactive.

• Used Memory: This element represents the used mem-
ory percentage for the node. For example, 10%, 25%,
etc.

• Used CPU : This element is in charge of managing the
node CPU usage. For example, 70%, 90%, etc.

• Delay: This element represents the delay in the queue of
the node. For example, 10ms, 60ms, 1s, etc.

• Queue Buffer Size: This element represents the queue
buffer size for the node. For example, 50KB, 20MB, etc.

• JFML: this element represents devices capable of using
the JFML library. For example, embedded systems, a
computer, or a server in the cloud where JFML can be
run.

• FML: this element contains a repository of FML files
where the knowledge base, the rule base and the fuzzy
inference model according to the IEEE std 1855-2016 are
coded.

A. Integration with JFML

In general, input/output elements or sensors/actuators pro-
vide data which are used for the JFML to make the inference
according to the expert knowledge represented in FML files.
This architecture allows communication between all the ubiq-
uitous elements thanks to the JFML capabilities. The behavior
of this communication procedure and the integration with
JFML is summarized below:

1) Input elements provide data. In consequence, they must
be associated to input variables. For example, the ele-
ment for reading the Status provides 0 for inactive and
1 for active status or the Used Memory provides values
in the interval [0, 100].

2) JFML receives input data from reading elements and it
assigns them to the input variables which are defined
in the FLS (represented in the FML files according to
the IEEE std 1855-2016). For example, JFML receives
data from the elements Status, Delay, etc. and they are
associated with the corresponding input variables.

3) When all reading elements have been provided their
data and JFML has assigned these values to the input
variables, the inference is carried out. Rules are fired
according to the input values and the rule base defined
in the FML files.

4) Once the inference process is finished, the output vari-
ables obtain values from the corresponding defuzzifi-
cation method. Then, JFML writes these values to the
corresponding output elements. For example, the value
of the output variable Buffer Size is considered to adjust
the buffer size of the node.

IV. STUDY CASE

In order to illustrate the suitability of this proposal in the
optimization of the queue buffer size in a node, a basic case

study is developed. Specifically, a case focused on several
network traffic situations where both the expert knowledge
in network traffic monitoring and the fog node design are
considered. A Raspberry PI Zero 2W, with 512MB RAM
LPDDR2 and a queue buffer with 64MB are used. Notice
that the SO requires about 200MB, resulting in 312 MB of
available RAM for user processes. The proposal does not
require high computational complexity, allowing it to run on
this device without impacting the overall performance of the
device. In this case, a queue buffer of 64MB would represent
just over 20% of the available RAM. In this sense, the use of
so much RAM for the buffer would have a very high impact on
the management of the node itself, limiting the possibilities of
effective use of it, and at the same time, showing an interesting
example to illustrate the applicability of this proposal.

In subsection IV-A, the FLS taking into account expert
knowledge is defined while in subsection IV-D some results
are also shown.

A. Defining the Fuzzy Logic System

Several network traffic situations related to fog traffic can
be considered by using the proposed node design. These
situations are involved to gradual concepts. For example, if
the memory usage is full and the CPU is very busy the buffer
size should be big to avoid delays. If the delay is low or
the CPU usage is idle, the buffer size could be little, while
if the delay is high the buffer size should increase. Hence, to
represent this expert knowledge the Fuzzy Logic System (FLS)
is defined. We propose a methodology for defining this FLS.
Fig. 2 illustrates the flowchart of the proposed methodology.

Fig. 2. Workflow for defining a FLS

Firstly, expert knowledge on network management in fog
infrastructures is considered in order to select variables to sup-
port the problem at hand. Based on the information gathered,
tentative rules are proposed and reviewed by a panel of experts
in this field of knowledge (5 persons with high knowledge
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on network monitoring and fog node design). If the experts
do not validate the rules, the process is initiated in order to
propose new variables and rules. However, if the proposal is
validated, a fuzzy logic system is defined. For this purpose,
firstly, the knowledge base is defined with several fuzzy
variables and their fuzzy terms (subsection IV-A1)). Secondly,
the rule base is also defined considering the expert knowledge
and the relationships between the fuzzy variables (subsection
IV-B). Finally, a representation of the FLS according to the
IEEE 1855-2016 standard for the Fuzzy Markup Language is
detailed (subsection IV-C).

1) Defining the Knowledge Base: Several fuzzy variables
which are related with some elements in the node are defined.
Concretely, four input and one output variables are considered:

• Status represents the status of the node as active or
inactive. It is an input variable defined by the singletons:
“On”, “Off”.

• Memory represents the memory usage of the node. It is
an input variable composed by the fuzzy terms “Empty”,
“Normal” and “Full” in the domain [0, 100] represented
in percentage for the total memory capacity.

• CPU indicates the CPU usage of the node. It is an input
variable defined by the fuzzy terms “Idle”, “Normal”,
“Busy” or “Very busy” in the domain [0, 100] represented
in percentage for the total CPU power.

• Delay represents the delay for processing the batch in
the node. It is an input variable defined by the fuzzy
terms “Low”, “Medium” or “High” in the domain [0, 10]
represented in ms.

• Buffer size represents the queue buffer size of the node.
It is an output variable defined by the fuzzy terms “Very
small”, “Small”, “Medium”, “Big” and “Very Big” in
the domain [0, 64] represented in MB.

B. Defining the Rule Base

Expert knowledge from the traffic network in a fog scenario
in the form of rules is considered in order to determine the
buffer size of the nodes. Specifically, 9 fuzzy rules have been
defined:

1) IF Status IS Off THEN Buffer IS Very small
2) IF Status IS On AND Memory IS Empty AND CPU IS

Idle AND Delay IS Low THEN Buffer IS Very small
3) IF Status IS On AND Memory IS Empty AND CPU IS

Normal AND Delay IS Low THEN Buffer IS Small
4) IF Status IS On AND Memory IS Empty AND Delay IS

Medium THEN Buffer IS Medium
5) IF Status IS On AND Memory IS Normal AND CPU IS

Normal THEN Buffer IS Medium
6) IF Status IS On AND Delay IS Medium AND CPU IS

Busy THEN Buffer IS Big
7) IF Status IS On AND Delay IS High THEN Buffer IS

Big
8) IF Status IS On AND Memory IS Full AND CPU IS Very

busy AND Delay IS Medium THEN Buffer IS Big
9) IF Status IS On AND Memory IS Full AND CPU IS Very

busy AND Delay IS High THEN Buffer IS Very big

C. Fuzzy Logic System according to the IEEE 1855-2016

All the previous rules and fuzzy variables have been rep-
resented in a FML file according to the IEEE std 1855-2016
specifications. As illustrative example, some parts of the file
are shown in the code 1 although the complete FML file can
be downloaded from the JFML official website.

1 <fuzzySystem xmlns="http://www.ieee1855.org" name="
Buffer Size optimizacion">

2 <knowledgeBase>
3 <fuzzyVariable name="Status" domainleft="-1.0

" domainright="10.0" type="input">
4 <fuzzyTerm name="On">
5 <singletonShape param1="1.0"/>
6 </fuzzyTerm>
7 <fuzzyTerm name="Off">
8 <singletonShape param1="0.0"/>
9 </fuzzyTerm>

10 </fuzzyVariable>
11 ....
12 <fuzzyVariable name="Buffer" domainleft="0.0"

domainright="64.0" type="output"
accumulation="MAX" defuzzifier="COG"
defaultValue="0.0">

13 <fuzzyTerm name="Very_small">
14 <triangularShape param1="0.0" param2="

0.0" param3="16.0"/>
15 </fuzzyTerm>
16 <fuzzyTerm name="Small">
17 <triangularShape param1="0.0" param2="

16.0" param3="32.0"/>
18 </fuzzyTerm>
19 <fuzzyTerm name="Medium">
20 <triangularShape param1="16.0" param2="

32.0" param3="48.0"/>
21 </fuzzyTerm>
22 <fuzzyTerm name="Big">
23 <triangularShape param1="32.0" param2="

48.0" param3="64.0"/>
24 </fuzzyTerm>
25 <fuzzyTerm name="Very_big">
26 <rightLinearShape param1="48.0" param2=

"64.0"/>
27 </fuzzyTerm>
28 </fuzzyVariable>
29 </knowledgeBase>
30 <mamdaniRuleBase name="rulebase1"

activationMethod="MIN" andMethod="MIN"
orMethod="MAX">

31 <rule name="rule1" andMethod="MIN" connector=
"and" weight="1.0">

32 <antecedent>
33 <clause>
34 <variable>Status</variable>
35 <term>Off</term>
36 </clause>
37 </antecedent>
38 <consequent>
39 <then>
40 <clause>
41 <variable>Buffer</variable>
42 <term>Very_small</term>
43 </clause>
44 </then>
45 </consequent>
46 </rule>
47 ...
48 </mamdaniRuleBase>
49 </fuzzySystem>

Code 1. Some part of the FML file designed for the queue buffer size
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D. Some illustrative results
In this subsection, some examples are detailed as a simu-

lation of real situations in an edge-to-cloud data stream pro-
cessing scenario involving the designed fog nodes by using our
proposal. In these examples, node receives data from stream
processing and depending on the node status (CPU, memory,
delay, etc.), the queue buffer size is adjusted according to the
output values provided by both the JFML and the FLS defined
in the previous section. Each result is validated by the expert
panel that defined the FLS. This validation was carried out
with experts, because for this example it was not appropriate to
include quantitative evaluation metrics, as the results coincided
with the opinion of the expert panel.

1) Case 1: Low network traffic - idle nodes : In this
example, the memory and the CPU usage are low and the delay
is medium. On this situation, the queue buffer size should be
small.
1 RESULTS
2 (INPUT): Status=1.0, Memory=10.0, CPU=30.0, Delay

=11.0
3 (OUTPUT): Buffer=19.860588
4 (ACTIVATED RULES):
5 RULE 3: rule3 - (0.8) IF Status IS On AND Memory

IS Empty AND CPU IS Normal AND Delay IS Low
THEN Buffer IS Small [weight=1.0]

6 RULE 4: rule4 - (0.2) IF Status IS On AND Memory
IS Empty AND Delay IS Medium THEN Buffer IS
Medium [weight=1.0]

Case 1. Node is On, Memory usage is 10%, CPU usage is 30% and Delay
is 11 ms

In this case, two rules have been fired. Rule 3 and Rule 4
with 0.8 and 0.2 respectively. The buffer size can be adjusted
to 19.860588. This would result in an increase of the memory
usage of just 16.4%. This buffer size is able to include the
required amount of data to maintain the process throughput
without increasing the delay of associated to the internal
processing. This buffer size is able to keep the delay below
11 ms with no increase in the CPU usage and very limited
impact on the memory occupancy.

2) Case 2: Moderate network traffic - moderately idle
nodes: In this example, the memory and the CPU usage are
low and the delay is medium. On this situation, the queue
buffer size should be medium.
1 RESULTS
2 (INPUT): Status=1.0, Memory=50.0, CPU=50.0, Delay

=10.0
3 (OUTPUT): Buffer=31.999846
4 (ACTIVATED RULES):
5 RULE 5: rule5 - (1.0) IF Status IS On AND Memory

IS Normal AND CPU IS Normal THEN Buffer IS
Medium [weight=1.0]

Case 2. Node is On, Memory and CPU usage are 50% and Delay is 10 ms

In this case, the rule 5 has been fired corresponding to a
medium situation. Then amount of buffer space can be fixed
to 32 MB. This scales up the memory usage to 60.3% which
is quite notable. The CPU usage will be increased to handle
such amount of memory, however, the amount of free memory
is still large enough not to constraint the computing process
and therefore, the delay is kept below 10 ms.

3) Case 3: High network traffic - overloaded nodes : In
this example, the memory and the CPU usage are high but
the delay is medium. On this situation, the queue buffer size
should be big to avoid collapse.

1 RESULTS
2 (INPUT): Status=1.0, Memory=80.0, CPU=95.0, Delay

=45.0
3 (OUTPUT): Buffer=48.591198
4 (ACTIVATED RULES):
5 RULE 7: rule7 - (0.25) IF Status IS On AND Delay

IS High THEN Buffer IS Big [weight=1.0]
6 RULE 8: rule8 - (0.5) IF Status IS On AND Memory

IS Full AND CPU IS Very_busy AND Delay IS
Medium THEN Buffer IS Big [weight=1.0]

7 RULE 9: rule9 - (0.25) IF Status IS On AND Memory
IS Full AND CPU IS Very_busy AND Delay IS

High THEN Buffer IS Very_big [weight=1.0]

Case 3. Node is On, Memory usage is 10%, CPU usage is 95% and Delay
is 45 ms

In this case, three rules have been fired. Rule 7 and Rule 9
with 0.25 and Rule 8 with 0.5. The buffer size can be adjusted
to 48.591198 MB. Such buffer size consumes up to 95.5% of
the memory. The CPU increases the usage to 100% to be able
to work with that limited amount of free memory for data
processing. However, the increase in delay due to the rise in
the processing time is hidden by the use of such a large buffer
size.

V. CONCLUSIONS

In this paper, a preliminary approach to dynamically and
automatically adjust the queue buffer size in a node for
stream processing in fog computing is proposed. This approach
presents a node design that integrates a JFML instance and
a FML file representing expert knowledge as a Fuzzy Logic
System (FLS) according to the IEEE std 1855-2016 for the
queue buffer-size problem in network traffic. This integration
provides an intelligent environment configured by “smart
nodes” in the fog layer responding in real-time to adjust
the queue buffer size of nodes for stream processing without
human intervention. In this way, aspects such as the number
of connections, delays, memory and CPU usage, etc. are taken
into account so that the node behaves as a human would. In
order to showcase the utility of the proposal, a case study
has been carried out. Concretely, a case focused on several
network traffic situations where expert knowledge in the
network traffic monitoring and fog node design are considered.
A methodology for defining the FLS is also proposed. Finally,
3 different scenarios are simulated where edge-to-cloud data
stream processing are considered. One scenario considers low
network traffic with idle nodes. Another scenario contemplates
moderate network traffic and the last one high network traffic
with overloaded nodes. The results are in accordance with
the expert panel assessment. Moreover, the simulated system
shows a clear improvement in the overall performance of
Stream Processing by keeping all data packets undropped with
the maximum possible throughput.

It is worth mentioning that the system is a non–linear
complex problem, in which in some cases, if one of the output
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variables is maximized, another one could become worse. For
instance, if the network is highly saturated, the buffer size may
grow larger, in order not to drop any packet from the network.
However, that would decrease the amount of memory in the
nodes, and that would make each node to increase the CPU
usage to deal with that low–memory environment. Therefore,
it is not a trivial situation, that could be managed with other
simpler mechanisms.
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