

A Werfen Company

I Seminario Teórico-Práctico de Microscopía Electrónica de Barrido Aplicada a la Caracterización de Materiales:

FUNDAMENTOS DE LA MICROSCOPÍA ELECTRÓNICA DE BARRIDO

Kanazawa Toshiyuki, JEOL SEM application engineer Alfonso Cárdenas, Responsable de Microscopía Electrónica Juan G. Rodríguez Madrid, PhD Sales Spcialist Microscopía Electrónica

PROGRAMA DEL SEMINARIO

Lunes 14 de enero de 2019

- 9:00-11:00 Parte teórica: Fundamentos de la Microscopía Electrónica de Barrido. Potencial y posibilidades del equipo JEOL JSM 7800F del SCAI.
 Profesorado: Personal de Izasa/Jeol.
- 11:30-13:30 Parte práctica (Grupo 1): Manejo básico del microscopio electrónico de barrido JEOL JSM 7800F.
- 15:30-17:30 Parte práctica (Grupo 2): Manejo básico del microscopio electrónico de barrido JEOL JSM 7800F.
- 17:30-19:30 Parte práctica (Grupo 3): Manejo básico del microscopio electrónico de barrido JEOL JSM 7800F.

Profesorado: Personal de Izasa/Jeol y D. Francisco Gracia Alfonso (responsable de la técnica en el SCAI).

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

SEM: Microscopio Electrónico de Barrido

- El microscopio SEM es un tipo de microscopio electrónico que se utiliza para observar muestras en volumen ("bulk") con un haz de electrones focalizado y muy estrecho en un área rectangular de dicha muestra
- Los electrones incidentes interaccionan con los átomos de la muestra produciendo señales que contienen información topográfica, de composición y de otros tipos de propiedades de la superficie de la muestra
- Incorporando detectores (EDS, WDS, etc) el equipo puede pasa a ser también analítico

EDS: Energy dispersive X-ray spectrometer WDS: Wave-length dispersive X-ray spectrometer

SEM: Componentes principales

CAÑÓN DE ELECTRONES

- Emisión de campo
- Termo-iónico

Wolframio / LaB₆

COLUMNA

- Lente Condensadora
- Bobinas de barrido
- Lente Objetivo

CÁMARA DE MUESTRAS

- Detectores de Electrones
- Platina portamuestras
- Puertos de entrada de accesorios
- Motorización
- Sistema de vacío

SEM: Componentes principales

SEM: M. Óptica vs M. Electrónica

ÓPTICA

ELECTRÓNICA

- Sistema de iluminación
- Lente condensadora
- Lente objetivo
- Ocular/Cámara
- Platina Manual/Motor

- Cañón de Electrones
- Lente condensadora
- Lente objetivo
- Monitor
- Cámara de muestras
- Platina Manual/Motor

SEM: M. Óptica vs M. Electrónica

SEM: M. Óptica vs M. Electrónica

Profundidad de foco

Mag	Depth of Field	
	Optical Microscopy	SEM
10X	~250 μm	~1000 µm
1200X	~0.08 µm	
10,000X		~10 µm

Imagen SEM

Imagen con MO

Muestra: Superficie rotura de tornillo

SEM: Fuente de electrones

SEM: Fuente de electrones

W-hairpin/LaB₆: Multi purpose Cold FEG: High-resolution imaging + EDS Thermal FEG: High-resolution imaging + Multipurpose

SEM: Fuente de electrones

Patrón de emisión de electrones:

SEM: Lente objetivo

- Conventional OL for SEM
- No magnetic flux on specimen
- No problem with magnetic specimens
- Good for multi purpose

- Short focal length
- Small Cs and Cc
- High resolution at low kV
- No Problem with magnetic specimens
- Short focal length
- Specimen is in a strong magnetic flux
- Small Cs and Cc
- High resolution at low kV
- Problem with magnetic specimens

- Short focal length
- Specimen is in a strong magnetic flux
- Small Cs and Cc
- High resolution at low and high kVs
- Problem with
- magnetic specimens
- Limited specimen size

SEM: Cámara de muestras

SEM: Sistemas de vacío

- Sistemas emisión termo iónica
 - Bomba rotativa/scroll para vacío previo
 - Bomba difusora/turbo para cañón, columna y cámara de muestras
 - Si se usa LaB₆, el cañón tiene que estar bombeado por bomba iónica

- Sistemas emisión por efecto campo
 - Bomba rotativa/scroll para vacío previo.
 - Bombas iónicas en el cañón
 - Bombas difusoras/ turbo en columna y cámara de muestras

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

1931: Development of TEM M. Knoll and E. Ruska (Germany) **1935** The first SEM (Origin of SEM) M. Knoll (Germany) **1938**: The first SEM with electromagnetic lenses (STEM) M. vonArdenne (Germany) **1942** : The first SEM for bulk specimen observation V.K. Zworykin (USA) $1948 \sim 59$: Basic researches of SEM C.W. Oatley Lab. of Cambridge Univ. (UK) 1965: The first commercialized SEM Cambridge Scientific Instrument (UK) **JEOL** (Japan)

Origen del SEM por M. Knoll (1935)

FIG.3 Electron-beam scanner image of silicon iron showing electron channeling contrast; horizontal field width = 50 mm. (Knoll 1935).

Imagen de una aleación de silicio-hierro Resolución: ~100µm

FIG. 2 Schematic diagram of Knoll's (1935) electron-beam scanner.

- Equipo desarrollado para investigar el materia utilizado en los tubos de las Televisiones
- Voltaje de aceleración: 500 ~ 4000V.
- Detectaba la corriente de electrones absorbidos para realizer la imagen
- Diámetro del haz: 100µm aprox.

Primer STEM por V. Ardenne (1938)

Primer STEM por V. Ardenne (1938)

Sir. C. Oatley junto con sus estudiantes (90 cumpleaños)

Detector Everhart-Thornley (1960)

Evolución de los detectores:

- (a) Arreglo de Oatley para detectar electrones transmitidos a través de una célula ambiental
- (b) Detector BSE desarrollado por Wells
- (c) Detector SE desarrollado por Everhart
- (d) Trayectorias de los electrones, desarrolladas por Thornley

Primeros SEM comerciales

FiG. 14 The prototype of the first Stereoscan SEM, supplied by the Cambridge Instrument Company to the duPont Company, U.S.A. (Stewart and Snelling 1965). Courtesy of Leica Ltd.

Cambridge Stereoscan (1965)

Resolution : 500Å (25 kV) Magnification : x100~x100,000 Accl. Voltage : 5 - 50 kV

JEOL JSM-1 (1965)

24

JFSM-30 (1974) – First FEG

JSM-50A (1972)

JSM-U3 (1969)

JSM-890 (1987)

JSM-35 (1974)

Resolución

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

Magnificación

Muestra

Resolución espacial

A Werfen Company

Respuesta de la muestra al haz de electrones

Respuesta de la muestra al haz de electrones

Dispersión elástica: se modifican las trayectorias del haz de electrones dentro del espécimen sin alterar la energía cinética de los electrones (electrones retrodispersos)

Dispersión inelástica: existe una transferencia de energía al espécimen que conducen a la generación de electrones secundarios, electrones Auger, radiación EM, fonones, plasmones, etc.

Volumen de interacción

By Goldstein

Imágenes SEM:

BaO TiO2

Imagen de electrones retrodispersados: Cerámica

Imagen de electrons secundarios: Bacteria

Colloidal Gold Bacteria (white particles)

Volumen de interacción:

21

Volumen de interacción:

At 15kV thin organic film is not visible. (BSE composition image)

A thin organic layer covering the surface of ferrite is more clearly observed at 5kV. (BSE composition image)

La información superficial se recoge mejor a bajo kilovoltaje.

Imágenes SEM: Detector SE

Teoría de la Microscopía Electrónica Imágenes SEM: Contraste Imagen SE

La emisión de electrones secundarios por la muestra depende enormemente del ángulo de incidencia de haz en la superficie de la muestra

Imágenes SEM: Detector BSE

Teoría de la Microscopía Electrónica Imágenes SEM: Contraste imagen BSE

La imagen de electrones retrodispersados depende de la media del número atómico y la densidad de los elementos que componen la muestra

Espectro de Energía de señales SEM:

La Señal SE es la más intensa (colisiones inelásticas) La señal BE es la más energética (colisiones elásticas)

Aplicaciones según corriente de sonda

Relación corriente de sonda – diámetro del haz

EJEMPLO PRÁCTICO

Relación corriente de sonda – diámetro del haz

Teoría de la Microscopía Electrónica Relación corriente de sonda – diámetro del haz

Teoría de la Microscopía Electrónica Bajo Vacío

A Werfen Company

Teoría de la Microscopía Electrónica Bajo Vacío: Ejemplos

Fibras de papel con CaCO₃

Tinta sobre papel

Vídeo Resumen

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

Preparación de la muestra:

Observación SEM:

1. La muestra va a estar en condiciones de vacío. Puede contraerse, deformarse o evaporarse.

2. Para una observación estable, es necesario que la muestra sea mínimamente conductora.

3. La fijación de la muestra es necesaria especialmente cuando se observan muestras a altas magnificaciones.

Análisis EDS:

1. Cuando se prepara la muestra se puede contaminar con otros elementos.

2. Si se require de un análisis cuantitativo preciso, la muestra tiene que estar pulida.

Preparación de la muestra SEM:

Preparación de la muestra EDS:

Obtención de imágenes en un SEM Preparación de la muestra EDS:

Obtención de imágenes en un SEM Ejemplos de imágenes cargadas:

1.2 kV 10 kV Muestra: Ceramica (Un-coated)

Obtención de imágenes en un SEM Ejemplos de imágenes cargadas:

Low Vacuum mode

High Vacuum mode

LVSED (60Pa) 5kV, WD10mm MAG: x1,000 5kV, WD10mm MAG: x1,000

Ejemplos de fijación de la muestra: Carga

Ejemplos de fijación de la muestra: Carga

Obtención de imágenes en un SEM Ejemplos de fijación de la muestra polvo:

Fixing the powder specimen for powder diameter down to 100 micro meter

Obtención de imágenes en un SEM Ejemplos de fijación de la muestra polvo en disolvente:

Powder specimen preparation with solvent

Establecimiento de las condiciones de observación:

- 1. Voltaje de aceleración
- 2. Corriente de sonda
- 3. Distancia de trabajo
- 4. Análisis elemental

Alineamientos:

- 1. Alineamiento del haz
- 2. Alineamiento de aperture OL
- 3. Ajuste Foco
- 4. Ajuste Astigmatismo
- 5. Ajuste Contraste y brillo

Obtención de imágenes en un SEM Selección de la aceleración del voltaje de aceleración:

- Baja aberración
- Alta resolución espacial

Baja

Desventajas

- Morfología de la superficie no clara
- Mayor efecto de borde
- Más carga
- Mayores daños en la muestra

- Buena para clara morfología de la superficie
- Disminuye efecto de borde
- Disminuye el efecto de la carga
- Disminuyen los daños en la muestra

Baja resolución espacial

Obtención de imágenes en un SEM Efecto del voltaje de aceleración:

Specimen: Boron nitride crystal

Ejemplo práctico

Efecto del voltaje de aceleración:

Acc. Voltage: ??? kV

?? kV Specimen: filter paper

Efecto del voltaje de aceleración:

Acc. Voltage: 3 kV

20 kV Specimen: filter paper

Obtención de imágenes en un SEM Efecto del voltaje de aceleración:

Glass ball

Acc. voltage: 5 kV

Acc. voltage: 15 kV

Muestra: Sección transversal de un circuito electrónico

Obtención de imágenes en un SEM Selección de la corriente de sonda:

Ejemplo práctico Efecto de la corriente de sonda:

Specimen: ZnO Mag.: x20k

??????

????

Obtención de imágenes en un SEM Efecto de la corriente de sonda:

Specimen: ZnO Mag.: x20k

Corriente de sonda alta

Corriente de sonda baja

Obtención de imágenes en un SEM Selección de la distancia de trabajo:

72
Ejemplo práctico Efecto de la distancia de trabajo:

Specimen: Tungsten filament, Mag. x100

??????

?????

Obtención de imágenes en un SEM Efecto de la distancia de trabajo:

Specimen: Tungsten filament, Mag. x100

Long working distance

Short working distance

Alineamiento del haz:

Alineamiento apertura OL:

Posición incorrecta de aperture OL

Posición correcta de aperture OL

Ajuste foco:

Under focus Just focus Over focus

Haz de electrones

Ajuste astigmatismo:

Muestra: red blood, mag.: x3000

Under focus Just focus

Over focus

Ajuste contraste y brillo:

contrast

SEM: Conceptos básicos

Historia de la Microscopía Electrónica

Teoría de la microscopía electrónica de barrido

Obtención de imágenes en un SEM

Aplicaciones

Aplicaciones: Polímeros

- Análisis de nanopartículas
- Análisis de papel
- Caracterización bio funcional de superficies
- Caracterización de defectos en capas
- Análisis de fibras
- Imagen de muestras húmedas
- Caracterización de superficies de materiales funcionales
- Análisis de calidad de recubrimientos

Aplicaciones: Nanofibras poliméricas

Nanofibras poliméricas

Sample courtesy of Scott Forbey, Virginia Tech

Aplicaciones: Materiales y semiconductores

- Análisis de materiales abrasivos
- Análisis de nanopartículas
- Caracterización bio funcional de superficies
- Caracterización de precipitados
- Análisis de grafeno
- 3D reconstrucción en alta resolución
- Análisis de la estructura y estados de unión de átomos
- Análisis In-situ de cambios microestructurales
- Análisis de elementos ligeros
- Análisis de trazas de elementos en micro escala
- Microestructura mineral
- Análisis estructural de sistemas multicapa

- Estructura / cross-section componentes electrónicos
- Caracterización de superficies de materiales funcionales
- Análisis de textura y mapeado elemental de materiales metálicos
- Análisis de papel
- Análisis de asbestos
- Caracterización de polvos
- Análisis de fibras
- Análisis de calidad de recubrimientos

83

Aplicaciones: Fibras y ropa

Mineral Filled Neoprene

Cloth

Aplicaciones: fibras conductoras industria del mueble

85

Aplicaciones - Electrónica

Semiconductor

Aplicaciones: Componentes electrónicos

x25

500µm

1kV

SEI

WD29mm SS48

87

Izasa Scientific A Werfen Company

Aplicaciones: Aleaciones Fe-Al

FelK

88

Aplicaciones: Metales

Fractura dúctil

Partículas metálicas

Aplicaciones: Recubrimientos

Aplicación: Dendritas de oxido de wolframio

Aplicaciones: Accesorios

CÁMARA DE MUESTRAS

- Detector Cátodo Luminiscencia
 - Imagen
 - Espectrómetro
- Máquinas ensayos mecánicos
 - Tracción
 - Comprensión
 - Pandeo
- Platinas Temperatura Controlada
 - Calentamiento
 - Enfriamiento (-25° C, -50° C)
 - Crio Transferencia (-180° C)
- Micromanipuladores
 - Medidas eléctricas

92

Thanks for your attention

