Plasma corticosterone and adrenal gland histomorphometry of heat stressed broiler chickens given supplemental electrolytes or vitamin C

Majekodunmi, B.C.; Ogunwole, O.A. and Sokunbi O.A.

INTRODUCTION

Activation of the hypothalamic-pituitary-adrenal (HPA) axis is a major neuroendocrine mechanism in a stress reaction (Axelrod and Reisine, 1984). This result in a rapid increase in circulating corticotrophin (ACTH) and subsequent rise in glucocorticoids which according to Dallman et al. (1992) are critical for successful adaptation. However, as a result of the HPA axis stimulation, significant changes occur in the adre-
As distinct from the mammalian adrenal gland, the cortical or interrenal tissue of avian adrenal gland intermingles with the medullary or chromaffin tissue and their distribution throughout the gland is said to be uniform, although the ratio of one type of tissue to the other varies (Wells and Wight, 1971). The medullary tissue has been consistently said to have a higher percentage volume than the cortical tissue in the adult (Sivaram, 1964), but this ratio varies with age, sex, health and environmental factors (Oakberg, 1951). Wells and Wight (1971) therefore considered the determination of the normal structure and distribution of the two component tissue types to be of great value as a base-line for physiological and pathological evaluation of the avian adrenal gland.

Ascorbic acid supplementation improved performance of heat challenged broiler chickens and has been associated with lower plasma corticosterone concentrations (Kutlu and Forbes, 1993; Mckee and Harrison, 1995). Better performance and reduced heat stress related mortality in broiler chickens given ascorbic acid and electrolytes have also been widely reported (Pardue et al., 1985; Ogunwole et al., 2013; Majekodunmi et al., 2015). However, there has been dearth of information on the histomorphometric response of adrenal gland of heat stressed broilers in hot humid tropics. Therefore, this study was aimed at determining the possible effect of administering supplemental oral electrolytes or vitamin C on blood corticosterone and adrenal gland histomorphology of broiler birds reared during hot period in the hot humid tropics of Nigeria.

MATERIALS AND METHODS

EXPERIMENTAL BIRDS AND MANAGEMENT

The study was carried out at the Teaching and Research Farm of the University of Ibadan, Ibadan which is located between latitudes 6°10′ and 9°10′ North of the equator and longitudes 30° and 60° of the Greenwich for a period of seven weeks. A total of 200 one day-old Arbor Acre broiler chicken strain were allotted to five treatment groups. Each treatment was replicated four times with 10 birds per replicate in a completely randomized design (CRD). Formulated broiler starter and finishers’ diets which contained 3000 KCal/Kg ME and 23 % CP; 3000 KCal/Kg ME and 19 % CP respectively. Detailed gross composition of the experimental diets has been documented (Majekodunmi et al., 2012; 2013) and is shown in table I. Experimental feed was offered to birds ad libitum throughout the experimental period.

Clean water in which test electrolytes or vitamin C has been added was also provided ad libitum. The treatments were: Treatment 1(control) was without any electrolyte or vitamin, Treatment 2 (0.5% ammonium chloride), Treatment 3 (0.5% sodium bicarbonate), Treatment 4 (0.5% calcium chloride), and Treatment 5 (300ppm vitamin C). The experiment was carried out during the hot period of the year (March- April) and average temperature and humidity recorded during the experimental period ranged from 30.9°C to 36.7°C and 58.48% to 89.24% respectively.

BLOOD COLLECTION

Blood samples were collected between 6:30 and 7:30 am from twelve randomly selected birds in each treatment at the end of week 4 and 7 of the experiment. Birds were bled through the jugular vein and blood was collected into vacutainers tube containing EDTA, centrifuged at 1500 x g for 10 minutes and the plasma was decanted and stored at -20°C for corticosterone measurement. In order to minimize stress induced procedure on the birds, it was ensured that each bird was caught and bled in less than one minute.

PLASMA CORTICOESTERONE ASSAY

Plasma corticosterone level was determined by Enzyme-Linked ImmunoSorbent Assay (ELISA) using a commercial kit. All samples were run in duplicate and absorbance was measured at 650nm in an ELISA micro plate reader.

HISTOLOGICAL ANALYSIS

Five birds were randomly selected from each replicate and sacrificed. Adrenal glands were removed and weighed. The left adrenal glands were fixed in Bouin’s fluid, embedded in paraffin wax, cut at 5 microns and stained with haematoxylin and eosin, and Masson’s trichrome stain. Five sections, representative of each adrenal gland, were studied as described (Gray, 1996).

Numerical density was calculated by dividing the total number of cells counted in all dissectors in an adrenal gland by the cumulative volume of the dissectors (area of the counting frame multiply by dissector height) sampled in the adrenal gland (Bielyohuby et al., 2007).

STATISTICAL DESIGN

All data were subjected to analysis of variance (SAS, 1999). Treatment means were compared using the Duncan’s option of the same software.

RESULTS

PLASMA CORTICOESTERONE AND NUMERICAL DENSITY OF ADRENAL GLAND CELLS

Plasma corticosterone (PC) concentration of heat stressed broiler birds given water supplemented with electrolytes and ascorbic acid is shown in figure 1. No significant difference (p>0.05) was observed in plasma corticosterone concentration among treatments in week 4. The values ranged from 4.89-12.50 ng/mL with birds on treatment 3 (sodium bicarbonate) having the highest concentration (12.50 ng/mL) while birds on...
treatment 1 (control), treatment 2 (ammonium chloride), treatment 4 (calcium chloride) and treatment 5 (ascorbic acid) had PC values of 10.43 ng/mL, 11.38 ng/mL, 4.88 ng/mL and 6.20 ng/mL respectively. However, at week 7 birds given water supplemented with calcium chloride had significantly higher (p<0.05) PC concentration of 15.10 ng/mL compared with birds on treatments 1 (6.05 ng/mL), 2 (7.38 ng/mL), 3 (5.43 ng/mL) and 5 (6.43 ng/mL). There were therefore decrease in the corticosterone concentration in birds on treatments 1, 2 and 3 which were 4.38, 4.00, and 7.07 ng/mL respectively. Whereas, there was about 3-fold increase (10.21 ng/mL) in the corticosterone concentration of birds on treatment 4 while there was marginal increase in those from treatment 5 (0.23 ng/mL) over week 4 value.

Numerical density (Nd) of cells in the cortex and medulla of adrenal glands of heat stressed birds given water supplemented with electrolytes and ascorbic acid is shown in figure 2. Significant variations (p<0.05) were observed in the Nd of both interrenal and medullary cells among treatments. The highest interrenal density was observed in birds on treatment 1 (1.05/µm³ x 10⁻⁶) which was significantly different (p<0.05) from the values reported for birds on treatments 2, 3 and 5 which were 0.63/µm³ x 10⁻⁶, 0.50/µm³ x 10⁻⁶ and 0.36/µm³ x 10⁻⁶, respectively. Similarly, Nd of medullary cell, also recorded a significantly higher (p<0.05) value (0.89/µm³ x 10⁻⁶) for birds on treatment 1 compared with birds on treatment 3 (0.38/µm³ x 10⁻⁶).

Figure 3 shows the microphotographs of adrenal gland of broiler birds given water supplemented with...
Figure 3. Microphotographs of the adrenal gland of broiler birds: A-control group (T1), B-Ammonium chloride (T2), C-Sodium bicarbonate (T3), D-Calcium chloride (T4) and E-Ascorbic acid (T5) (Photomicrographie de glande surré nale des oiseaux de poulets de chair : groupe A-témoin (T1), chlorure d'Ammonium B (T2), C-bicarbonate de soude (T3), chlorure de D-Calcium (T4) et E-ascorbique acide (T5) M-médullaires des cellules, I-t'enu-rénal) M- Medullary cells, I- Interrenal cells)
electrolytes and ascorbic acid. Plate A of figure 3 shows faint cells with blurred cellular outlines. Plate B revealed swollen chromaffin cells with expanded cytoplasm. Plate C shows extensive cellular necrosis of both areas. Plate D shows blurred cellular outlines with necrosis. Plate E shows relatively normal cell appearance.

DISCUSSION

The reduction observed in the corticosterone concentration of birds on all the treatments except treatment 4 (calcium chloride) at week 7 in this study might be that the stress period was longer and the birds were beginning to acclimate to the stressor which agreed with the findings of Thaxter et al. (2005) of a consistent decrease in blood corticosterone concentration from week 2 to week 7. This further suggested an apparent physiological adaptation of broilers to their environment which is enhanced as the birds approached market age. It has been demonstrated (Freeman, 1970; Puvadolpirod and Thaxton, 2000) that corticosterone secretion increased at high temperatures. Kutlu and Forbes (1993) reported that ascorbic acid induced a significant reduction of the glucocorticoid synthesis in birds. Similarly, Sahin et al. (2002) reported low plasma concentrations of ACTH in quail reared at 32°C and supplemented with vitamin C. The proposed mechanism for this effect is through inhibition of the activity of the hydroxylase enzymes (21-hydroxylase and 11β-hydroxylase) by ascorbic acid in the steroid (corticosterone) biosynthetic pathway. The increased PC concentration in calcium chloride group (treatment 4) at week 7 may indicate the potential of calcium chloride in inducing abnormal metabolic acid-base balance in heat stressed birds. Calcium chloride is mainly excrated in the faeces as calcium carbonate, the chloride replacing bicarbonate in the body causing acidosis. Bottje and Harrison (1984) reported decrease in blood bicarbonate in calcium chloride infused birds which according to them demonstrates an overriding metabolic acidosis during heat stress.

The adrenal medulla in mammalian species is surrounded by a cortex that contains three distinct layers, whereas the cortex and the medulla are intermingled in poultry species (Basha et al., 2009). In birds, the adrenal gland is characterized by the presence of cortical or inter-renal tissue which intermingles with the medullar or chromaffin tissue with a relatively uniform distribution but the ratio of one type of tissue to the other remains variable (Well and Wight, 1971). The relative volume proportions of the medullar tissue are usually considered to be higher than those of the cortical tissue in adult but this ratio varies with age, sex, health and environmental factors (Well and Wight, 1971). The adrenal glands are known to respond to stress conditions, particularly environmental conditions, by inter-renal hyperplasia in birds (Freeman, 1970). Observed elevation in PC levels of control, ammonium chloride and sodium bicarbonate groups at week 4 and calcium chloride at week 7 could explain the relatively abnormal cellular appearances in the interenal and medulary cells of the adrenal glands of birds in these groups. However, the eventual reduction in PC values of birds in control, ammonium chloride and sodium bicarbonate groups could be as a result of natural adaptation responses of the birds to heat stress.

In this study, vitamin C supplementation prevented hyperplasia of interrenal cell which was evident in the significant reduction in the numerical density of the interenal cell responsible for the corticosterone synthesis in birds supplemented with vitamin C compared with other treatment groups. This observation conformed to earlier report (Ozdemir et al., 2009) of increased proportion of medullar zone in birds given diet supplemented with vitamin C. Histological changes observed for birds on control and electrolyte treatment groups revealed evidence of stress at the cellular level while the relatively normal cell appearance observed in ascorbic acid group could be attributed to the antioxidant effect of vitamin C in protecting the adrenal gland cells. This observation perhaps indicated that birds on treatment 5 (ascorbic acid) were relatively more comfortable and less stressed compared with birds on other treatments. This effect was considered as beneficial for birds under heat stress.

CONCLUSION

The reduction in plasma corticosterone values recorded in the ammonium chloride and sodium bicarbonate groups was not different from the observation for the control birds. Whereas, ascorbic acid was able to mitigate excessive production of corticosterone expected during heat stress and also prevented proliferation (hyperplasia) of interrenal cell of stressed broiler chickens.

ACKNOWLEDGEMENTS

The authors hereby express their profound gratitude to Dr B. O. Olugasa of the Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria for the release of his ELISA laboratory for the plasma corticosterone analysis. We are also grateful for the support received from the Head and Staff of the Central Laboratory of the University of Ibadan, Ibadan, Nigeria.

REFERENCES

