Interacciones entre epistemologías de las matemáticas y los sistemas educativos: el surgimiento de comunidades matemáticas según las culturas y los estados en la Europa del siglo XIX

Contenido principal del artículo

Gert Schubring

Resumen

Este artículo analiza la convicción generalmente compartida de que las matemáticas son una ciencia universal, con un "lenguaje común" y una "agenda de investigación compartida". Estas convicciones se discuten en particular con respecto a las afirmaciones en el volumen "Mathematics Unbound" de 2002, donde se sostiene que las comunidades matemáticas nacionales surgieron durante el siglo XIX pero convergieron en una comunidad universal durante el siglo XX. Al enfatizar la importancia clave de las estructuras educativas nacionales, se argumenta aquí que las comunidades nacionales ya surgieron a raíz del humanismo. Los "lenguajes" diferentes para concebir números negativos proporcionan ejemplos reveladores para mostrar epistemologías relacionadas con diferentes estructuras educativas. Y un “lenguaje” fundamentalista en Italia muestra la alineación de la educación matemática con las concepciones clasicistas de la educación. Conectando con la concepción de “estilos nacionales”, el artículo propone enfoques para comprender las características que marcan las diferencias entre las comunidades matemáticas nacionales como las vinculadas a valores sociales y culturales y reveladas por los sistemas educativos. En la conclusión, se discute el reclamo de una comunidad internacional emergente.

Detalles del artículo

Cómo citar
Schubring, G. (2021). Interacciones entre epistemologías de las matemáticas y los sistemas educativos: el surgimiento de comunidades matemáticas según las culturas y los estados en la Europa del siglo XIX. Matemáticas, educación Y Sociedad, 4(1), 1-16. Recuperado a partir de https://www.uco.es/ucopress/ojs/index.php/mes/article/view/13231
Sección
Artículos

Citas

Betti, E. & Francesco B. (1867). Gli Elementi d’Euclide com note aggiunte ed esercizi ad uso de’ Ginnasi e de‘ Licei. Firenze: Monnier (Libri I-III 1867, IV-VI 1868, XI-XII e Appendice 1868).
Bézout, É. (1781). Cours de Mathématiques à l’usage des Gardes du Pavillon et de la Marine. Troisième Partie. Contenant l’Algebre et l’application de cette science à l’Arithmétique et la Géométrie Paris: Pierres.
Crelle, A. L. (1822). “Vorrede”, Adrien Marie Legendre. Die Elemente der Geometrie und der ebenen und sphärischen Trigonometrie. Aus dem Französischen übersetzt und mit Anmerkungen begleitet, A. L. Crelle (Herausgeber), Berlin: Rücker, iii-iv.
Förstemann, W. A. (1817). Ueber den Gegensatz positiver und negativer Größen. Nordhausen: Happach.
Frend, W. (1796). Principles of Algebra. 2 vols. London.
Hauff, J K. F. (1800). Vorwort. In Lazare Carnot, Betrachtungen über die Theorie der Infinitesimalrechnung, von dem Bürger Carnot. Aus dem Französischen übersetzt und mit Anmerkungen und Zusätzen begleitet von Johann Karl Friedrich Hauff (Frankfurt am Main: Jäger.
Hindenburg, C. F. (1795). Allgemeine Darstellung des Polynomialtheorems nach de Moivre und Boscovich, nebst [...]. Archiv der reinen und angewandten Mathematik, Erster Band, viertes Heft, pp. 385–384.
Kästner, A. G. (1792). Anfangsgründe der Arithmetik, Geometrie, ebenen und sphärischen Trigonometrie, und Perspectiv. Der mathematischen Anfangsgründe 1ten Theils erste Abtheilung. Fünfte vermehrte Auflage (Göttingen: Vandenhoek und Ruprecht.
Kuhn, T. (1962). The Structure of scientific revolutions. Chicago, Ill.: University of Chicago Press
Lacroix, S.-F. (1803). Éléments d’Algèbre. Troisième édition, revue et corrigée. Paris: Courcier, an XI = 1803.
Legendre, A.-M. (1794). Éléments de géométrie. Paris: Imprimérie..., an II (= 1794)
Luhmann, N. (1984). Soziale Systeme – Grundriß einer allgemeinen Theorie. Frankfurt: suhrkamp.
Luhmann, N. (1990). Wissenschaft der Gesellschaft. Frankfurt: suhrkamp.
Malaty, G. (1999). The Third World mathematics education is a hope for the world mathematics education development in the 21st century. In Rogerson, A. (ed.), Proceedings of the international conference mathematics education into the 21st century, pp. 231–240. Cairo.
Maseres, (1758). Dissertation on the Use of the Negative Sign in Algebra. London: Richardson/Payne.
Metternich, M. (1811). Anfangsgründe der Algebra von Sylvestre-François Lacroix. Nach der siebten Auflage übersetzt und mit erläuternden Anmerkungen und Zusätzen vermehrt. Mainz: Kupferberg.
Metz, A. (1804). Handbuch der Elementar-Arithmetik in Verbindung mit der Elementar-Algebra (Bamberg, Würzburg: J. A. Göbhardt.
Parshall, K. H. & Rice, A. (eds.) (2002). Mathematics Unbound. The Evolution of an International Mathematical Research Community, 1800-1945. Providence, RI: American Mathematical Society, London Mathematical Society.
Prouhet, E (1871). Préface. In Sylvestre-François Lacroix. Éléments d’Algèbre. Vingt-troisième édition, revue, corrigée et annotée par E. Prouhet. Paris: Gauthier-Villars.
Rommevaux, S., Maryvonne S. & Massa Esteve, M.R (éds.). (2012). Pluralité de l’Algèbre à la Renaissance. Paris: Honoré Champion.
Scarpis, U. (1911). L’insegnamento della matematica nelle scuole classiche. I. I successivi programmi dal 1867 al 1910, Commisssione Internazionale dell’Insegnamento Matemático, Atti della Sottocommissione Italiana. Roma.
Schubring, G. (1989). La réforme du savoir savant: la contribution de Condorcet au premier concours des 'livres élémentaires', Condorcet, Mathématicien, économiste, philosophe, homme politique, éds. Pierre Crépel, Christian Gilain. Paris: Minerve , 44 51.
Schubring, G. (1996). Changing cultural and epistemological views on mathematics and different institutional contexts in 19th century Europe. L'Europe mathématique - Mythes, histoires, identités. Mathematical Europe - Myths, History, Identity, eds. Catherine Goldstein, Jeremy Gray, Jim Ritter (Paris: Éditions de la Maison des Sciences de l'Homme, 1996), 361-388.
Schubring, G. (2002). Aspetti istituzionali della matematica. Storia della scienza, ed. Sandro Petruccioli, Vol. VI: L'Etá dei Lumi. Roma: Istituto dell'Enciclopedia Italiana, 366-380.
Schubring, G. (2007). Documents on the mathematical education of Edmund Külp (1800-1862), the mathematics teacher of Georg Cantor. ZDM The International Journal for Mathematics Education, 2007, 39: 107-118.
Schubring, G. (2005). Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.
Schubring, G. (2009). The way from the combinatorial school to the reception of the Weierstrassian analysis“. Dalla pecia all'e-book. Libri per l'Università: stampa, editoria, circolazione e lettura. Atti del Convegno internazionale di studi, Bologna, 21-25 ottobre 2008, a cura di Gian Paolo Brizzi, Maria Gioia Tavoni. Bologna: CLUEB, 2009, pp. 431-442.
Schubring, G. (2012). Lettres de mathématiciens français à Weierstraß – documents de sa réception en France“, L’aventure de l’analyse, de Fermat à Borel. Mélanges en l’honneur de Christian Gilain, éd. Suzanne Féry. Nancy: Presses Universitaires de Nancy, 567-594.
Schubring, G. (2020). The development of forms to study mathematics. “Dig where you stand” 6. Proceedings of the Sixth International Conference on the History of Mathematics Education, September 16-20, 2019, at the CIRM (Luminy) France, eds. Évelyne Barbin, Kristín Bjarnadóttir, Fulvia Furinghetti, Alexander Karp, Guillaume Moussard, Johan Prytz, Gert Schubring & Harm Jan Smid. Münster: WTM Verlag, 289-302.
Stichweh, R. (1984). Zur Entstehung des modernen Systems wissenschaftlicher Disziplinen. Physik in Deutschland, 1740–1890. Frankfurt/M.: suhrkamp.
Vita, V. (1986). I programmi di matematica per le scuole secondarie dall’unita d’Italia al 1986. Rilettura storico-critica. Bologna.