
CÓRDOBA UNIVERSITY

SUPERIOR POLYTECHNIC SCHOOL

DEPARTMENT OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS

ARTIFICIAL INTELLIGENCE ARTIFICIAL INTELLIGENCE
LANGUAGESLANGUAGES

TECHNICAL ENGINEERING IN MANAGEMENT COMPUTER SCIENCEG G G

TECHNICAL ENGINEERING IN SYSTEMS COMPUTER SCIENCE

SECOND YEAR

FIRST FOUR-MONTH PERIOD

ACADEMIC YEAR: 2009 - 2010

ARTIFICIAL INTELLIGENCE LANGUAGESARTIFICIAL INTELLIGENCE LANGUAGES PROGRAMPROGRAM

Subject 1.- Introduction to Scheme language

Subject 2.- Expressions and Functions

First part: Scheme
Subject 3.- Conditional Predicates and Sentences

Subject 4.- Iteration and Recursionp S S j R

Subject 5.- Compound Data Types

Subject 6 - Data Abstraction Subject 6. Data Abstraction

Subject 7.- Reading and Writing

S d t P l

Subject 8.- Introduction to Prolog language

Subject 9.- Basic Elements of Prolog
Second part: Prolog

j f g

Subject 10.- Lists

Subject 11.- Re-evaluation and the “cut”

2

Subject 11. Re evaluation and the cut

Subject 12.- Input and Output

ARTIFICIAL INTELLIGENCE LANGUAGESARTIFICIAL INTELLIGENCE LANGUAGES PROGRAMPROGRAM

First part: Scheme

Subject 1.- Introduction to Scheme language

S bj t 2 Ex r i d F tiSubject 2.- Expressions and Functions

Subject 3.- Conditional Predicates and Sentences

Subject 4.- Iteration and Recursion

Subject 5 - Compound Data Types Subject 5.- Compound Data Types

Subject 6.- Data Abstraction

Subject 7.- Reading and Writing

3

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Schemey f

4

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Schemey f

5

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Functional Programming is a subtype of Declarative Programming

6

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Declarative Programming (1 / 2)

Objective: Problem description

“What” problem must be resolved?
Notice:Notice:

- It does not mind “how” the problem is resolved

- It avoids the implementation features.

7

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Declarative Programming (2 / 2)

Features

ExpressivityExpressivity

Extensible: 10% - 90% rule

Protection

Mathematic Eleganceg

Types:

F i l A li i P i Functional or Applicative Programming:

- Lisp, Scheme, Haskell, …

8Logic Programming: Prolog

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Principle of the “Pure” Functional Programming

“The expression value only depends on its sub-expressions values,

if h b i i t ”if such sub-expressions exist ”.

Non collateral effects

The value of “a + b” only depends on “a” and “b”.

The function term is used in its mathematical sense The function term is used in its mathematical sense.

No instructions: programming without assignments

The impure Functional programming allows the

“assignment instruction”
9

assignment instruction

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Program structure in Functional Programming

The program is a function composed of simpler functions

F ti tiFunction execution:

Receives the input data: functions arguments or parameters

Evaluates the expressions

Returns the Result: computed value of the functionReturns the Result: computed value of the function

10

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

1. Fundamental Characteristics of Functional Programming

Type of Functional Languages

Most of them are interpreted languages

Some of them have compiled versionsSome of them have compiled versions

Memory management

Implicit memory management:

Memory management is a task of the interpreter.

The programmer must not worry about memory management.

Garbage collection: task of the interpreterGarbage collection: task of the interpreter.

In short: the programmer must only worry about the Problem description

11

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Contents
1. Fundamental Characteristics of Functional Programming

2. Historic Summary of Schemey f

12

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Compilation versus Interpretation

L i l (t ti) d i l Lexical (or static) versus dynamical scope

Origin of Scheme

13

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Compilation versus Interpretation

L i l (t ti) d i l Lexical (or static) versus dynamical scope

Origin of Scheme

14

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

John McCarthy (MIT)

“Advice Taker” program: Advice Taker program:

Theoretical basis: Logic Mathematics

Objective: Deduction and Inferences

LISP: LISt Processing (1956 – 1958)g ()

Second historic language of Artificial Intelligence (after IPL)

A i d hi i l i (f)At present time, second historic language in use (after Fortran)

LISP is based on Lambda Calculus (Alonzo Church)

15Scheme is a dialect of LISP

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Functional Programming Characteristics

R iRecursion

Lists

Implicit memory management

Interactive and interpreted programs Interactive and interpreted programs

Symbolic Programming

Dynamically scoped for non local variables

16

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

LISP’s contributions:

B ilt i f tiBuilt – in functions

Garbage collection

Definition Formal Language: LISP itself

17

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Applications: Artificial Intelligence Programs

Theorem verification and testingTheorem verification and testing

Symbolic differentiation and integration

S h P blSearch Problems

Natural Language Processing

Computer Vision

Robotics

Knowledge Representation Systems

Expert Systems

18

p y

And so on

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Dialects (1 /2)

M LISP (M d t M hi id d iti) Mac LISP (Man and computer or Machine – aided cognition):
East Coast Version

() W VInter LISP (Interactive LISP): West Coast Version

- Bolt, Beranek y Newman Company (BBN)

- Research Center of Xerox at Palo Alto (Texas)

LISP M hi- LISP Machine

19

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Dialects (2 / 2)

Mac LISP (Man and computer or Machine – aided cognition): Mac LISP (Man and computer or Machine aided cognition):
East Coast Version

- C-LISP: Massachusetts Universityy

- Franz LISP: California University (Berkeley). Compiled
version.

- NIL (New implementation of LISP): MIT.

- PSL (Portable Standard LISP): Utah University() y

- Scheme: MIT.

- T (True):Yale University
20

T (True):Yale University.

- Common LISP

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Compilation versus Interpretation

L i l (t ti) d i l Lexical (or static) versus dynamical scope

Origin of Scheme

21

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation:

Th d (hi h l l) i t f d i t t bl The source code (high level) is transformed into executable
code (low level), which can be independently run.

22

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Source codeSource code CompilerCompilerSource codeSource code CompilerCompiler

23

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Source codeSource code CompilerCompilerSource codeSource code CompilerCompiler

Compilation errorsCompilation errors

24

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Source codeSource code CompilerCompiler Executable codeExecutable codeSource codeSource code CompilerCompiler Executable codeExecutable code

25

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Input dataInput data

Source codeSource code CompilerCompiler Executable codeExecutable codeSource codeSource code CompilerCompiler Executable codeExecutable code

26

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Input dataInput data

Source codeSource code CompilerCompiler Executable codeExecutable codeSource codeSource code CompilerCompiler Executable codeExecutable code

Execution errorsExecution errors OutputOutput

27

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

Input dataInput data

Source codeSource code CompilerCompiler Executable codeExecutable codeSource codeSource code CompilerCompiler Executable codeExecutable code

OutputOutput

28

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation

29

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation or simulation: consists of a cycle of three stages

30

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation or simulation: consists of a cycle of three stages

1 A l i th d i l d t d t i th 1. Analysis: the source code is analysed to determine the
following correct sentence to be run.

31

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation or simulation: consists of a cycle of three stages

1 A l i th d i l d t d t i th 1. Analysis: the source code is analysed to determine the
following correct sentence to be run.

h f d bl2. Generation: the sentence is transformed into executable
code.

32

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation or simulation: consists of a cycle of three stages

1 A l i th d i l d t d t i th 1. Analysis: the source code is analysed to determine the
following correct sentence to be run.

h f d bl2. Generation: the sentence is transformed into executable
code.

3. Execution: the executable code is run.

33

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation

Source codeSource code InterpreterInterpreter

34

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation

Input dataInput data Interpretation errorsInterpretation errorspp Interpretation errorsInterpretation errors

Source codeSource code InterpreterInterpreter

35

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation

Input dataInput datapp

Source codeSource code InterpreterInterpreter

OutputOutput Execution errorsExecution errors

36

pp

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Interpretation

Input dataInput datapp

Source codeSource code InterpreterInterpreter

OutputOutput
37

pp

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Compilation versus interpretation

Compilation

I d d

Interpretation

D d t- Independent

- Memory necessities

- Dependent

- No memory necessities

- Efficient

Global

- Less efficient

- Local- Global

- No interaction

- Local

- Interaction

- Closed code during execution - Open code during execution

38

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Compilation versus Interpretation

L i l (t ti) d i l Lexical (or static) versus dynamical scope

Origin of Scheme

39

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

H f h2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope

The scope rules determine the declaration of non local identifiers

Non local identifiers:f

Variables or functions which can be used in a function or
procedure but are not declared in that function or procedure

Two types

Lexical or static scopex p

- With “blocks structure”: Pascal, Scheme

- Without “blocks structure”: C Fortran- Without blocks structure : C, Fortran

Dynamical scope:

Al ith “bl k t t ” Li SNOBOL APL
40

- Always with “blocks structure”: Lisp, SNOBOL, APL

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

H f h2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope
Block structure

A procedure or function can call
- Itself
- Its children (but not its grandchildren…)

b h (b h)- Its brothers (but not its nephews)
- Its father, grandfather, great-grandfather, …

Th b h f f h df h- The brothers of its father, grandfather, …
A procedure or function can be called by

I lf- Itself
- Its father (but not by its grandfather, …)

I hild d hild d hild
41

- Its children, grandchildren, great-grandchildren, …
- Its brothers and their children, grandchildren, ...

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

Declaration of procedure f

Declaration of procedure g

Declaration of procedure hExample of Declaration of procedure h

Declaration of procedure k

x p f
blocks structure

Declaration of procedure lDeclaration of procedure l

Declaration of procedure m

Declaration of procedure n

42

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

f lf l

m n
g hg h

h Hierarchical blocks structure
43

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

f lf l

m n
g hg h

k Functions which can be called by f
44

y f

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

f lf l

m n
g hg h

k Functions which can call f
45

f

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

f lf l

m n
g hg h

k Functions which can be called by h
46

y

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

P

f lf l

m n
g hg h

k Functions which can call h
47

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

H f h2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope

Lexical or static scope

The declaration of a non local identifier depends on the closest f f p
lexical context:

You only have to read the program

to determine the declaration of an identifier.

The closest nesting rules:g

- The scope of a procedure (*) f includes the procedure f.

- If a non local identifier x is used in f then the declaration - If a non local identifier x is used in f then the declaration
of x must be found in the closest procedure g which
includes f

48
- Notice (*) : procedure, function or block

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Declaration of procedure h
Declaration of variable x (x1)
Declaration of variable y (y1)
Declaration of variable z (z1)

Example:
()

Declaration of procedure g
Declaration of variable x (x2)
Declaration of variable y (y2)

Lexical scope

with “block structure”

Declaration of variable y (y2)

Declaration of procedure f
Declaration of variable x (x3)

with block structure
Use of x (x3)
Use of y (y2)
Use of z (z1)

Use of x (x2)
Use of y (y2)
Use of z (z1)
Call to fCall to f

Use of x (x1)
Use of y (y1)
Use of z (z1)

49

Use of z (z1)
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

H f h2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope

Lexical or static scope

Without block structure:k

- If x is not local for a specific function then it is not local for
all functions

50

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

int x; /* x1 */
int y; /* y1 */
int z; /* z1 */

Global variables are
not recommended

main()
{

int x; /* x2 */
int y; /* y2 */

/* Use of x x2 */
/* U f 2 */

Example in C:
/* Use of y y2 */
/* Use of z z1 */
/* Call to f */
f ();

without

“bl k ”
();

}

f()
{

“block structure”
{
int x; /* x3 */
/* Use of x x3 */
/* Use of y y1 */

51

/ Use of y y1 /
/* Use of z z1 */
}

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

f h2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope

Dynamical scope:

The declaration of an identifier depends on the execution of the f f p x f
program

You have to run the program
to determine the declaration of an identifier

The closest activation rules:

- The scope of a procedure (*) f includes the procedure f.

If a non local identifier x is used in the activation of f then - If a non local identifier x is used in the activation of f then
the declaration of x must be found in the closest active
procedure g with a declaration of x

52

p g f

- Notice (*) : procedure, function or block

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Lexical (or static) versus dynamical scope

Notice:

Th d i l ll th t id tifi b i t d The dynamical scope allows that an identifier can be associated
to different declarations during the program execution

53

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x

Declaration of procedure fExample: p
Use of x

Lexical
Declaration of procedure g
Declaration of variable x

D l ti f d h

versus
Declaration of procedure h
Use of x
Call to f

Dynamical
Call to f
Call to h
if condition = true then Call to g

scope
g

else Use of x

Use of x
ll f

54

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

ff

Activation Stack Activation Tree
55

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

f

Activation Stack Activation Tree
56

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

f

f

Activation Stack Activation Tree
57

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

f

Activation Stack Activation Tree
58

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
59

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f hf

f
Program

g

f

Activation Stack Activation Tree
60

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
61

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f hh

f
Program

g

f

Activation Stack Activation Tree
62

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f

f hh

f
Program

g

f

Activation Stack Activation Tree
63

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f hh

f
Program

g

f

Activation Stack Activation Tree
64

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
65

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

f
Program

f

Activation Stack Activation Tree
66

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program

f gf g

f h

ff

Activation Stack Activation Tree
67

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

f

ProgramProgram Program

f

Program

Program
g

Program g

f

Program

h f
g

Program
g

h f

h
g

Program g

Program

68Changes in the activation Stack (1 / 2)

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

f

h h
g

P

h

g

h
g

ProgramProgram Program Program

ProgramProgram

69
Changes in the activation Stack (2 / 2)

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

70

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

ff

Activation Stack Activation Tree
71

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x1
ll f

72

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x1 of Program in

f g

Use of x1 of Program in
Program

f g

f h

f
Program

f

Activation Stack Activation Tree
73

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

74

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x1

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

75

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x1 of Program in f

f g

Use of x1 of Program in f

f g

f h

f
Program

f

f

Activation Stack Activation Tree
76

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

f
Program

f

Activation Stack Activation Tree
77

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

78

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
79

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

80

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x1

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

81

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x1 of Program in f

f g

Use of x1 of Program in f

f g

f hf

f
Program

g

f

Activation Stack Activation Tree
82

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
83

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

84

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x2
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

85

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x2 of h in h

f g

Use of x2 of h in h

f g

f hh

f
Program

g

f

Activation Stack Activation Tree
86

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

87

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x1

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

88

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x1 of Program in f

f g

Use of x1 of Program in f

f g

f

f hh

f
Program

g

f

Activation Stack Activation Tree
89

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f hh

f
Program

g

f

Activation Stack Activation Tree
90

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x2

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x2

Use of x
ll f

91

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope
Use of x2 of g in g

f g

Use of x2 of g in g

f g

f h

f
Program

g

f

Activation Stack Activation Tree
92

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x2

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

lexical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x2

Use of x
ll f

93

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

f
Program

f

Activation Stack Activation Tree
94

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Lexical scope

f gf g

f h

ff

Activation Stack Activation Tree
95

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

96

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

ff

Activation Stack Activation Tree
97

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x1
ll f

98

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Use of x1 of Program in

f g

Use of x1 of Program in
Program

f g

f h

f
Program

f

Activation Stack Activation Tree
99

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

100

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x1

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

101

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Use of x1 of Program in f

f g

Use of x1 of Program in f

f g

f h

f
Program

f

f

Activation Stack Activation Tree
102

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

f
Program

f

Activation Stack Activation Tree
103

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

104

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
105

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

106

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x2

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

107

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Notice: use of x2 of g in f

f g

Notice: use of x2 of g in f

f g

f hf

f
Program

g

f

Activation Stack Activation Tree
108

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

f
Program

g

f

Activation Stack Activation Tree
109

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

110

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x2
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

111

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Use of x2 of g in h

f g

Use of x2 of g in h

f g

f hh

f
Program

g

f

Activation Stack Activation Tree
112

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

113

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x2

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x

Use of x
ll f

114

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Notice: use of x2 of g in f

f g

Notice: use of x2 of g in f

f g

f

f hh

f
Program

g

f

Activation Stack Activation Tree
115

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f hh

f
Program

g

f

Activation Stack Activation Tree
116

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x2

Use of x
ll f

117

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope
Use of x2 of g in g

f g

Use of x2 of g in g

f g

f h

f
Program

g

f

Activation Stack Activation Tree
118

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

ProgramProgram
Declaration of variable x (x1)

Declaration of procedure fp
Use of x

Declaration of procedure g
Declaration of variable x (x2)

D l ti f d h

Run with
Declaration of procedure h
Use of x
Call to f

dynamical scope

Call to f
Call to h
if condition = true then Call to gg
else Use of x2

Use of x
ll f

119

Call to f
Call to g

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

f
Program

f

Activation Stack Activation Tree
120

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

Program Dynamical scope

f gf g

f h

ff

Activation Stack Activation Tree
121

k

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

LISP

Compilation versus Interpretation

D i ll t ti ll Dynamically versus statically scope

Origin of Scheme

122

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

H f h2. Historic Summary of Scheme

Origin of Scheme:

Gerald Jay Sussman (MIT) and Guy Lewis Steele Jr.

Question: Question:

How would LISP be with lexical or static scope rules?

A l hAnswer: new language Scheme

More efficient implementation of recursion

First class functions.

Rigorous semantic rulesRigorous semantic rules

Influence on Common LISP: lexical scope rules

R i d 5 R h Al i h i L S h
123

Revised 5 Report on the Algorithmic Language Scheme

Artificial Intelligence Languages Subject 1.- Introduction to Scheme language

2. Historic Summary of Scheme

Scheme:

Structure of scheme programs

Sequence of Sequence of

- definitions of functions and variables

- and expressions

124

CÓRDOBA UNIVERSITY

SUPERIOR POLYTECHNIC SCHOOL

DEPARTAMENT OF
COMPUTER SCIENCE AND NUMERICAL ANALYSIS

ARTIFICIAL INTELLIGENCE ARTIFICIAL INTELLIGENCE
LANGUAGESLANGUAGES

TECHNICAL ENGINEERING IN MANAGEMENT COMPUTER SCIENCEG G G

TECHNICAL ENGINEERING IN SYSTEMS COMPUTER SCIENCE

SECOND COURSE

FIRST FOUR-MONTH PERIOD

ACADEMIC YEAR: 2009 - 2010

