

UNIVERSDAD DE CÓRDOBA

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA

DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO

PROGRAMACIÓN DECLARATIVA

CUARTO CURSO
PRIMER CUATRIMESTRE

Tema 9.- Elementos básicos de Prolog

Primera parte: Scheme

Tema 1.- Introducción al lenguaje Scheme

Tema 2.- Expresiones y funciones

Tema 3.- Predicados y sentencias condicionales

Tema 4.- Iteración y recursión

Tema 5.- Tipos de datos compuestos

Tema 6.- Abstracción de datos

Tema 7.- Lectura y escritura

Segunda parte: Prolog

Tema 8.- Introducción al lenguaje Prolog

Tema 9.- Elementos básicos de Prolog

Tema 10.- Listas

Tema 11.- Reevaluación y el "corte"

Tema 12.- Entrada y salida

Segunda parte: Prolog

Tema 8.- Introducción al lenguaje Prolog

Tema 9.- Elementos básicos de Prolog

Tema 10.- Listas

Tema 11.- Reevaluación y el "corte"

Tema 12.- Entrada y salida

Índice

- 1. Términos
- 2. Operadores aritméticos
- 3. Operadores relacionales
- 4. Definición de nuevos operadores

Índice

- 1. Términos
- 2. Operadores aritméticos
- 3. Operadores relacionales
- 4. Definición de nuevos operadores

Definición

 Los tipos de datos en Prolog se denominan "términos".

Tipos

- Números
- Átomos
- Variables
- Estructuras
- Listas
- Cadenas de caracteres

Números

Enteros

Reales

- Observación
 - Es un tipo de dato constante.
 - Los rangos de los valores numéricos dependen del intérprete.

- Átomos
 - Definición
 - Son constantes que no tienen valores numéricos.

- Átomos
 - Sintaxis (1/3)
 - Primera forma:
 - ☐ Compuestos por letras, números o el símbolo "_".
 - ☐ Deben comenzar por una letra minúscula.
 - ☐ Ejemplos
 - √ juan, ana, oro, agua
 - √ fin_de_mes, dato_1, paga_extra

- Átomos
 - Sintaxis (2/3)
 - Segunda forma:
 - ☐ Cualquier secuencia de caracteres delimitados por comillas simples.
 - □ Ejemplos
 - √ 'Juan Lara Luque'
 - √ 'Fin de mes'
 - √ '1Ba'

- Átomos
 - Sintaxis (3/3)
 - Tercera forma:
 - ☐ Cualquier secuencia de uno o más de los siguientes caracteres especiales:

☐ Ejemplos

- Átomos
 - No son átomos
 - Uno, Marta, Vaso:
 - Comienzan por una letra mayúscula.
 - **23ab:**
 - ☐ Comienza por un dígito.
 - _hombre:
 - ☐ Comienza por "_"

Variables

- Definición
 - Tipo de dato que puede modificar su valor.
- Sintaxis
 - Su nombre está compuesto por letras, números o el símbolo de "_".
 - Su nombre debe comenzar por una letra mayúscula o el símbolo "_".

Variables

- Ejemplos
 - X, Y, N, Respuesta, Cola, Cabeza
 - Pago_anual, Clave_secreta, ...
 - Dato_1, Dato_2, ...
 - _dato, _control, ...

- Variables
 - Variable anónima: símbolo "_"
 - Cada aparición de la variable anónima es independiente de las demás.
 - La variable anónima se utiliza para
 - indicar que existe un valor que hace verdadero un predicado,
 - ☐ pero no interesa saber qué valor es.

- Variables
 - Variable anónima: símbolo "_"
 - Ejemplo (1/3) tiene (juan, bicicleta). tiene (juan, coche).

tiene (ana, motocicleta). tiene (ana, coche).

tiene (pedro, barco).

- Variables
 - Variable anónima: símbolo "_"
 - Ejemplo (2/3)
 - ☐ ¿Qué cosas tiene Juan? ?- tiene (juan, X). X = bicicleta; X = coche.

☐ ¿Tiene Juan alguna cosa?

?- tiene(juan,_).

true

- Variables
 - Variable anónima: símbolo "_"
 - Ejemplo (3/3)
 - Qué cosas tiene en común Juan y Ana?
 ? tiene (juan, X), tiene (ana, X).
 X = coche
 - ☐ ¿Tienen Juan y Pedro alguna cosa?

 ?- tiene(juan,_), tiene(pedro,_).

 true

Estructuras

- Definición
 - Es un tipo de dato compuesto por uno o varios términos:
 - números, átomos, estructuras, listas o cadenas.
 - Permiten organizar la información.
- Sintaxis
 - nombre_estructura(atributo₁, ..., atributo_N)

- Estructuras
 - Ejemplos
 - Formato de la estructura libro
 libro(título, autor, editorial, año)
 - Uso de la estructura "libro" con el predicado "tiene".

tiene('Juan Lora', libro('Ana Karenina', 'Tolstoi', 'Luna',2010)). tiene('Juan Lora', libro('El Quijote', 'Cervantes', 'Fe',2007)).

Predicado Estructura

- Estructuras
 - Ejemplos
 - Títulos de los libros que tiene Juan Lora

```
?- tiene('Juan Lora', libro(T, _, _,_)).
T = 'Ana Karenina';
T = 'El Quijote'
Se teclea ";"
```

- Estructuras
 - Observación
 - No se deben confundir las estructuras con los predicados.
 - ☐ Un **predicado** devuelve un valor de verdadero o falso.
 - ☐ Una estructura no devuelve ningún valor, sino que solamente agrupa datos relacionados.

- Estructuras
 - Observación
 - Errores

?- libro('Ana Karenina', A, _, _).

Error.

Listas

- Definición
 - Una lista es un tipo especial de estructura compuesta por una secuencia ordenada de cero, uno o más elementos.
 - Cada elemento puede ser cualquier término, incluso otra listas

Sintaxis

```
[elemento<sub>1</sub>, ..., elemento<sub>N</sub>]
```

Forma equivalente

```
.(elemento _1, .(elemento _2, .( ... , .(elemento _N, [])...)
```

- Listas
 - Ejemplos

```
[]
[a] .(a, [])
[a, b] .(a, .(b, []))
[a, b, c] .(a, .(b, .(c, [])))
```

Listas

Observación

Las listas serán explicadas en el tema nº 10.

Cadenas de caracteres

Definición

 Una cadena de caracteres es una secuencia de caracteres delimitados por comillas.

Observación

 Prolog considera que una cadena de caracteres es un caso especial de lista compuesta por códigos ASCII.

Ejemplo

"Hola"

[72, 111, 108, 97]

Índice

- 1. Términos
- 2. Operadores aritméticos
- 3. Operadores relacionales
- 4. Definición de nuevos operadores

- Introducción
- Operadores prefijos
- Operadores infijos
- Ejemplos de predicados con operadores aritméticos

- Introducción
- Operadores prefijos
- Operadores infijos
- Ejemplos de predicados con operadores aritméticos

Introducción

- Una expresión aritmética se puede considerar como una estructura.
 - Ejemplo

- Introducción
 - Evaluación de expresiones
 - Prolog utiliza la palabra clave "is" para evaluar una expresión aritmética.
 - Ejemplo

$$X = 21$$

?-
$$X$$
 is +(*(2,3),1).

$$X = 7$$
.

Introducción

- Observación
 - Si una variable tiene un valor entonces no se le puede asignar un valor nuevo.
 - Ejemplo

```
?-X is 1, A is 2 * X, X is A + 1.
```

false.

?-X is 1, A is 2 * X, Y is A + 1.

$$X = 1$$
,

$$A = 2$$
,

$$Y = 3.$$

Introducción

Tipo y asociatividad

	Tipo	Asociatividad
Prefijo	fx	No
	fy	Derecha
Infijo	xfx	No
	xfy	Derecha
	yfx	Izquierda
Postfijo	xf	No
	уf	Izquierda

Introducción

Tipo, asociatividad y precedencia

?- current_op(Prec, Asoc, Operador).

Indica la precedencia y la asociativad del operador

Un operador tiene mayor precedencia si su valor numérico es menor.

Introducción

Tipo, asociatividad y precedencia

```
?- current_op(Prec, Asoc, -).

Prec = 200

Asoc = fy;

Prec = 500

Asoc = yfx;

No
```

Introducción

Tipo, asociatividad y precedencia ?- current_op(Prec, Assoc, *). *Prec = 400* Assoc = yfxYes ?- current_op(Prec, Assoc, is). *Prec = 700* Assoc = xfxYes

- Introducción
- Operadores prefijos
- Operadores infijos
- Ejemplos de predicados con operadores aritméticos

Operadores prefijos

Ejemplos

$$?- X is + 9.$$

$$X = 9$$

$$X = -12$$

- Introducción
- Operadores prefijos
- Operadores infijos
- Ejemplos de predicados con operadores aritméticos

Operadores infijos

Operador	Significado	Precedencia	Asociatividad	Ejemplo
^	Potencia	200	Derecha	?- X is 2^3^2. X = 512. ?- X is (2^3)^2. X = 64
**	Potencia	200	No	?- X is 2**3. X = 8. ?- X is 2**3** 2. Error ?- X is (2**3)**2. X = 64

Operadores infijos

Operador	Significado	Precedencia	Asociatividad	Ejemplo
*	Producto	400	Izquierda	?- X is 2*3*4. X = 24.
/	División	400	Izquierda	?- X is 60 / 2 / 3. X = 10
rdiv	Cociente de la división entera	400	Izquierda	?- X is 12 rdiv 4. X = 3.
//	Cociente de la división entera	400	Izquierda	?- X is 15 // 4. X = 3.
mod	Resto de la división entera	400	Izquierda	?- X is 12 mod 3. X = 0.
rem	Resto de la división entera	400	Izquierda	?- X is 12 rem 3. X = 0.

Operadores infijos

Operador	Significado	Precedencia	Asociatividad	Ejemplo
+	Suma	500	Izquierda	?- X is 2+3+4. X = 9
-	Resta	500	Izquierda	?- X is 8 - 2 - 3. X = 3

- Operadores infijos
 - o Precedencia
 - Un operador tiene mayor precedencia si su valor numérico de precedencia es menor.
 - Orden de precedencia

```
☐ Mayor: ()
```

```
□ ^, **
```

- Operadores infijos
 - o Ejemplos

?-
$$X$$
 is 2 * 3 + 4 $rdiv$ 2+ 5 mod 2. $X = 9$.

?-
$$X$$
 is 2^3 - $12/4*3$. $X = -1$.

- Introducción
- Operadores prefijos
- Operadores infijos
- Ejemplos de predicados con operadores aritméticos

- Ejemplos de predicados con operadores aritméticos
 - Cuadrado

```
cuadrado(X,R):-R is X * X.
```

?- cuadrado(2,R).

R = 4.

?- cuadrado(N,4).

ERROR: is/2: Arguments are not sufficiently instantiated

- Ejemplos de predicados con operadores aritméticos
 - Media

?- media(2,3,M).

$$M = 2.5$$

Ejemplos de predicados con operadores aritméticos

```
Factorial

factorial(0,1).

factorial(N,R):-

N1 is N - 1,

factorial(N1,R1),

R is N * R1.
```

```
?- factorial (3,R).
R = 6.
```

R = 8

- Ejemplos de predicados con operadores aritméticos
 - **Fibonacci** fibonacci(0,1). fibonacci(1,1).fibonacci(N,R):-N1 is N-1, N2 is N-2, fibonacci(N1,R1), fibonacci(N2,R2), R is R1 + R2.?- fibonacci (5,R).

- Ejemplos de predicados con operadores aritméticos
 - Máximo común divisor (pseudocódigo)

```
mcd(A,B)
Si B = 0
    entonces A
    si no mcd(B, A mod B)
    fin_si
```

	Paso		
	1	2	3
Α	18	12	6
В	12	6	0
resto	6	0	

- Ejemplos de predicados con operadores aritméticos
 - Máximo común divisor (versión 1)

```
mcd1(A,B,R):-B = := 0, R \text{ is } A.
mcd1(A,B,R):-
A1 \text{ is } A \text{ mod } B,
mcd1(B,A1,R).
```

```
?- mcd1(12,18,R).

R= 6.

?- mcd1(18,12,R).

R= 6.
```

- Ejemplos de predicados con operadores aritméticos
 - Máximo común divisor (versión 2)

```
mcd2(A,0,R):- R is A.
mcd2(A,B,R):-

A1 is A mod B,
mcd2(B,A1,R).
```

```
?- mcd2(12,18,R).

R= 6.

?- mcd2(18,12,R).

R= 6.
```

- Ejemplos de predicados con operadores aritméticos
 - Máximo común divisor (versión 3)

```
mcd3(A,0,A).

mcd3(A,B,R):-

A1 is A mod B,

mcd3(B,A1,R).
```

```
?- mcd3(12,18,R).
R= 6.
?- mcd3(18,12,R).
R= 6.
```

- Ejemplos de predicados con operadores aritméticos
 - **Densidad** poblacion('Francia', 60000000). poblacion('España', 45000000). area('Francia', 640000). area('España', 505000). densidad(Pais,D):poblacion(Pais,P), area(Pais,A), D is P / A.

- Ejemplos de predicados con operadores aritméticos
 - Densidad

?- densidad('Francia', D).

D = 93.75.

?- densidad('España',D).

D = 89.1089.

Índice

- 1. Términos
- 2. Operadores aritméticos
- 3. Operadores relacionales
- 4. Definición de nuevos operadores

- Operadores de igualdad
- Operadores de desigualdad
- Operadores de "mayor y menor que"
- Ejemplos de predicados con operadores relacionales

- Operadores de igualdad
- Operadores de desigualdad
- Operadores de "mayor y menor que"
- Ejemplos de predicados con operadores relacionales

- O =
 - Reglas de uso
 - Dos constantes
 - ☐ Una constan<mark>te y una variable</mark>
 - Dos variables
 - ☐ Estructuras y variables

Operadores de igualdad

- Reglas de uso
 - □ Dos constantes son iguales si poseen el mismo valor

true

$$?-10 = 9.$$

false

?-
$$a = a$$
.

true

$$?-a = b.$$

false

$$?-lugar(3,3) = lugar(3, 3).$$

true.

$$?-lugar(3,3) = lugar(3, 0).$$

false.

✓ Nota: lugar es una estructura

- Operadores de igualdad
 - O =
 - Reglas de uso
 - ☐ Una constante y una variable
 - ✓ Si la variable tiene un valor (variable "instanciada") entonces se comprueba si dicho valor es igual a la constante.

?-
$$X$$
 is 10, $X = 10$.

$$X = 10$$

?-
$$X$$
 is 10, $X = 9$.

false

- - Reglas de uso
 - ☐ Una constante y una variable
 - ✓ Si la variable no tiene un valor (variable "no instanciada") entonces
 - > se asigna el valor de la constante a la variable
 - > y la igualdad se cumple

$$?-X = 10.$$

$$X = 10$$

$$?-X = a.$$

$$X = a$$

?-
$$X = lugar(3, 3)$$
.
 $X = lugar(3,3)$.

$$X = lugar(3,3).$$

- Operadores de igualdad
 - - Reglas de uso
 - ☐ Una constante y una variable
 - ✓ No importa el orden

$$?-X = 10.$$

 $X = 10.$

$$X = 10.$$

$$?-10 = X.$$

 $X = 10.$

$$X = 10$$

- O =
 - Reglas de uso
 - Dos variables
 - ✓ Si las variables están "instanciadas", se comprueba si sus valores son iguales.
 - ✓ Si una variable está "instanciada" y la otra no, la variable "instanciada" le asigna su valor a la otra variable.
 - ✓ Si las dos variables no están "instanciadas" entonces las variables pasan a compartir "memoria".

Operadores de igualdad

- 0 =
 - Reglas de uso
 - Dos variables
 - ✓ Si las variables están "instanciadas", se comprueba si sus valores son iguales.

?-
$$X$$
 is 2, Y is 2, $X = Y$.

$$X = 2$$
,

$$Y = 2$$
.

?-
$$X$$
 is 2, Y is 3, $X = Y$.

false.

- Operadores de igualdad
 - O =
 - Reglas de uso
 - Dos variables
 - ✓ Si una variable está "instanciada" y la otra no, la variable "instanciada" le asigna su valor a la otra variable.

?-
$$X$$
 is 2, $X = Y$.

$$X = 2$$
,

$$Y = 2$$
.

- Operadores de igualdad
 - 0 =
 - Reglas de uso
 - Dos variables
 - ✓ Si las dos variables no están "instanciadas" entonces las variables pasan a compartir "memoria".

$$?-X = Y, X \text{ is } 2.$$

$$X = 2$$
,

$$Y = 2$$
.

- 0 =
 - Reglas de uso
 - ☐ Estructuras y variables
 - ✓ Se comprueba la igualdad atributo a atributo.
 - ✓ Se tiene en cuenta si las variables están o no "instanciadas".

- 0 =
 - Reglas de uso
 - ☐ Estructuras y variables

?-
$$lugar(X,Y) = lugar(2,3)$$
.

$$X = 2$$
,

$$Y = 3$$
.

?-
$$lugar(X,3) = lugar(2,Y)$$
.

$$X = 2$$
,

$$Y = 3$$
.

- 0 =
 - Reglas de uso
 - ☐ Listas y variables
 - ✓ Se comprueba la igualdad elemento a elemento.
 - ✓ Se tiene en cuenta si las variables están o no "instanciadas".

Operadores de igualdad

- 0 =
 - Reglas de uso
 - ☐ Listas y variables

?-
$$[X,Y]=[a,b]$$
.

$$X = a$$
,

$$Y = b$$
.

$$Y = b$$
,

$$X = a$$
.

Operadores de igualdad

- O ==
 - Reglas de uso
 - ☐ El funcionamiento de "=" y "==" es igual sobre las constantes o si las variables están "instanciadas"
 - ☐ Si una variable no está "instanciada" entonces el resultado siembre es "false".

- Operadores de igualdad
 - - Ejemplos

?-
$$X$$
 is 1, $X == 1$. $X = 1$.

$$X = 1$$
.

?-
$$X$$
 is 1, $X == Y$.

false.

?-
$$X == Y$$
.

Operadores de igualdad

- o =:=
 - Reglas de uso
 - ☐ Solamente se puede usar con expresiones aritméticas.
 - ☐ Las variables siempre deben estar "instanciadas".

Operadores de igualdad

Ejemplos

$$?-X = := 1.$$

ERROR: =:=/2: Arguments are not sufficiently instantiated

?-
$$X$$
 is 2, $3 * X = := 6$.

$$X = 2$$
.

?-
$$X$$
 is 2, $X = := a$.

ERROR: =:=/2: Arithmetic: `a/O' is not a function

- Operadores de igualdad
- Operadores de desigualdad
- Operadores de "mayor y menor que"
- Ejemplos de predicados con operadores relacionales

Operadores de desigualdad

Operadores de desigualdad

```
() \=
```

- Reglas de uso
 - ☐ Es verdadero si el primer argumento no es igual al segundo argumento.

Ejemplos

?-
$$X = b$$
, $X = a$.

$$X = b$$
.

?-
$$X = a$$
.

false.

?-
$$X = a, X = a$$
.

false.

Operadores de desigualdad

- o \==
 - Reglas de uso
 - ☐ Es verdadero si el primer argumento no es igual al segundo argumento.
 - ☐ No importa que las variables no estén instanciadas.

Operadores de desigualdad

Ejemplos

?-
$$X = b$$
, $X = a$.

$$X = b$$
.

?-
$$X = a$$
.

true.

?-
$$X = a, X = a$$
.

false.

Operadores de desigualdad

- o =/=
 - Reglas de uso
 - ☐ Solamente se puede usar con expresiones aritméticas.
 - ☐ Las variables siempre deben estar "instanciadas".

Operadores de desigualdad

Ejemplos

?-
$$X = = a$$
.

ERROR: =\=/2: Arguments are not sufficiently instantiated

?-
$$X$$
 is 1, $X = = a$.

ERROR: =\=/2: Arithmetic: `a/0' is not a function

?-
$$X$$
 is 1, $X = 1 = 2$.

$$X = 1$$
.

- Operadores de igualdad
- Operadores de desigualdad
- Operadores de "mayor y menor que"
- Ejemplos de predicados con operadores relacionales

Operadores de "mayor y menor que"

- Reglas de uso
 - ☐ Solamente se puede usar con expresiones aritméticas.
 - ☐ Las variables siempre deben estar "instanciadas".
- Observación
 - ☐ El predicado "menor o igual que" es =< y no

Operadores de "mayor y menor que"

Ejemplos

?-
$$X >= 0$$
.

ERROR: >=/2: Arguments are not sufficiently
instantiated

$$?-X \text{ is } 2, X < 10.$$

$$X = 2$$
.

?-
$$X$$
 is 2, 10 * X =< 7.

false.

- Operadores de igualdad
- Operadores de desigualdad
- Operadores de "mayor y menor que"
- Ejemplos de predicados con operadores relacionales

- Ejemplos de predicados con operadores relacionales
 - Máximo (versión 1)

$$max1(X,Y,R):-X >= Y, R is X.$$

$$max1(X,Y,R):-X < Y, R is Y.$$

?-
$$max1(2,3,R)$$
.

$$R = 3$$
.

$$?- max1(3,2,R).$$

$$R = 3$$
.

?-
$$max1(3, \mathbb{R}, 3)$$
.

ERROR: >=/2: Arguments are not sufficiently instantiated

- Ejemplos de predicados con operadores relacionales
 - Máximo (versión 2)

$$max2(X,Y,X):-X >= Y.$$

$$max2(X, Y, Y):- X < Y.$$

?-
$$max2(2,3,R)$$
.

$$R = 3$$
.

$$?- max2(3,2,R).$$

$$R = 3$$
.

?-
$$\max 2(2, \mathbb{R}, 3)$$
.

$$R = 3$$
.

- Ejemplos de predicados con operadores relacionales
 - Máximo (versión 3)

$$max3(X,Y,X):-X>=Y.$$

$$max3(_,Y,Y)$$
.

?-
$$max3(2,3,R)$$
.

$$R = 3$$
.

$$?- max3(3,2,R).$$

$$R = 3$$
.

?-
$$max3(3, \mathbb{R}, 3)$$
.

$$R = 3$$
.

- Ejemplos de predicados con operadores relacionales
 - Reinado

```
reinado('Carlos II', 1665, 1700).
reinado('Felipe V',1700,1724).
reinado('Luis I', 1724, 1724).
reinado('Felipe V', 1724, 1746).
rige(Persona,N):-
   reinado(Persona, A, B),
   A = < N,
   N = < B.
```

- Ejemplos de predicados con operadores relacionales
 - Reinado

```
?- rige(R,1724).
R = 'Felipe V';
R = 'Luis I';
R = 'Felipe V'.
Se teclea ";"
R = 'Felipe V'.
```

Índice

- 1. Términos
- 2. Operadores aritméticos
- 3. Operadores relacionales
- 4. Definición de nuevos operadores

Sintaxis

op(Precedencia,Tipo,Nombre)

Significado

 Declara un operador con el nombre, precedencia y tipos indicados.

Sintaxis

op(Precedencia, Tipo, Nombre)

- Precedencia
 - Varía desde 0 (máxima precedencia) hasta 1200 (menor precedencia).
 - El valor 0 borra la declaración.

Sintaxis

op(Precedencia, Tipo, Nombre)

- Tipo
 - xf, yf, xfx, xfy, yfx, fy, fx.
 - ☐ f: indica la posición del operador
 - □ x, y: indican la posición de los argumentos
 - ✓ y: debe ser interpretado en esa posición con precedencia menor o igual que la precedencia del operador
 - ✓ x: la precedencia del operador debe ser estrictamente menor

Sintaxis

op(Precedencia, Tipo, Nombre)

Tipo	Asociatividad
fx	No
fy	Derecha
xfx	No
xfy	Derecha
yfx	Izquierda
Postfijo xf	No
yf	Izquierda
	fx fy xfx xfy yfx

Sintaxis

op(Precedencia, Tipo, Nombre)

O Nombre:

 Puede ser una lista de nombres del operador, en cuyo caso todos son considerados como operadores con características similares.

Ejemplo

```
?- [factorial].true.? 3 ! R.R = 6
```

Fichero factorial.pl

```
factorial(0,1).
factorial(N,R):-
        N1 is N - 1,
         factorial(N1,R1),
         R is N * R1.
!(X,R):-factorial(X,R).
?- op(150,xfy,!).
```

Ejemplo

Observación

 Si se desea declarar el operador en el fichero

entonces es **obligatorio** escribir

los símbolos ?-


Fichero factorial.pl

```
factorial(0,1).
factorial(N,R):-
       N1 is N - 1,
       factorial(N1,R1),
       R is N * R1.
!(X,R):-factorial(X,R).
?- op(150,xfy,!).
```

Ejemplo

Observación

 También se puede escribir

Fichero factorial.pl

```
factorial(0,1).
factorial(N,R):-
       N1 is N - 1,
       factorial(N1,R1),
       R is N * R1.
!(X,R):-factorial(X,R).
:- op(150,xfy,!).
```

Ejemplo tiene(juan, coche). tiene(juan, bici). has(john, car). has(john, bike). ?- op(150, xfy, [tiene, has]). true. ?- juan tiene R. R = cocheR = bici.?- john has R. R = carR = bike.

UNIVERSDAD DE CÓRDOBA

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA

DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO

PROGRAMACIÓN DECLARATIVA

CUARTO CURSO
PRIMER CUATRIMESTRE

Tema 9.- Elementos básicos de Prolog

