Convolutional neural networks for the automatic diagnosis of melanoma: an extensive experimental study

Authors

Eduardo Pérez, Oscar Reyes and Sebastián Ventura

Source code is available to download at Github.

Abstract

Melanoma is the type of skin cancer with the highest levels of mortality, and it is more dangerous because it can spread to other parts of the body if not caught and treated early. Melanoma diagnosis is a complex task, even for expert dermatologists, mainly due to the great variety of morphologies in moles of patients. Accordingly, the automatic diagnosis of melanoma is a task that poses the challenge of developing efficient computational methods that ease the diagnostic and, therefore, aid dermatologists in decision-making. In this work, an extensive analysis was conducted, aiming at assessing and illustrating the effectiveness of convolutional neural networks in coping with this complex task. To achieve this objective, twelve well-known convolutional network models were evaluated on eleven public image datasets. The experimental study comprised five phases, where first it was analyzed the sensitivity of the models regarding the optimization algorithm used for their training, and then it was analyzed the impact in performance when using different techniques such as cost-sensitive learning, data augmentation and transfer learning. The conducted study confirmed the usefulness, effectiveness and robustness of different convolutional architectures in solving melanoma diagnosis problem. Also, important guidelines to researchers working  on this area were provided, easing the selection of both the proper convolutional model and technique according the characteristics of data.

Index

  1. Image datasets for melanoma diagnosis
  2. Optimization algorithms for training CNNs
  3. Weight balancing
  4. Transfer learning
  5. Balance data using data-augmentation
  6. Combining transfer learning and data augmentation
  7. Complexity of the Convolutional Neural Network structures used in this work

Image datasets for melanoma diagnosis

Due to the incidence of melanoma is continuing to increase worldwide, in the last few years several private and public datasets have been published, thus allowing a better study of this illness and, therefore, the design of better approaches for its automatic diagnosis. The most popular private data collections of dermoscopic images are the Interactive Atlas of Dermoscopy (Argenziano et al., 2004), Dermofit Image Library (Ballerini et al., 2013), and the dataset presented by Esteva et al. (2017) which conducted a comparison with 21 dermatologists using 129,450 clinical images; to the best of our knowledge this last dataset is the largest one reported in the literature.

Regarding public datasets for studying melanoma, the biggest collection of datasets can be found in ISIC repository, comprising a total of 23,906 images that were labeled by expert dermatologists. In this repository we can found the HAM10000, MSK and UDA datasets which appeared in (Tschandl et al., 2018), (Codella et al., 2018), and (Gutman et al., 2016), respectively. Furthermore, this repository provides the different datasets presented in the annual ISIC challenges (ISIC-2016, ISIC-2017, etc), which are also commonly used as benchmarks by the researchers. Mendonca et al. (2013), on the other hand, created the PH2 dataset that comprises 200 highquality dermoscopic images. Finally, Ericsson (2015) presented the MED-NODE dataset that collects 170 non-dermoscopic images shot with common digital cameras; it is noteworthy that this source of data is very important nowadays since the use of technological devices (e.g. smartphones and tablets) is constantly growing.

Dataset Source # Img. ImbR IntraC InterC DistR Silhouette
HAM10000 (Tschandl et al., 2018 7,818 6.024 8,705 9,770 0.891 0.213
ISBI2016 (Gutman et al., 2016) 1,273 4.092 10,553 10,992 0.960 0.101
ISBI2017 (Codella et al., 2018) 2,745 4.259 9,280 9,674 0.959 0.089
MED-NODE (Giotis et al., 2015) 170 1.429 9,029 9,513 0.949 0.068
MSK-1 (Codella et al., 2018) 1,088 2.615 11,753 14,068 0.835 0.173
MSK-2 (Codella et al., 2018) 1,522 3.299 9,288 9,418 0.986 0.062
MSK-3 (Codella et al., 2018) 225 10.842 8,075 8,074 1.000 0.112
MSK-4 (Codella et al., 2018) 943 3.366 6,930 7,162 0.968 0.065
PH2 (Mendonca et al., 2013) 200 4.000 12,688 14,928 0.850 0.210
UDA-1 (Gutman et al., 2016) 557 2.503 11,730 12,243 0.958 0.083
UDA-2 (Gutman et al., 2016) 60 1.609 11,297 11,601 0.974 0.020
Table 1: Summary of the benchmark datasets. Img: total number of images; ImbR: imbalance ratio between the benign and malignant classes; IntraC: average distance between samples of the same class; InterC: average distance between samples of different classes; DistR: ratio between IntraC and InterC; Silhouette: silhouette score.

 

Optimization algorithms for training CNNs

Table 2 shows the results obtained after training the twelve CNN models with the three selected optimization algorithms, SGD, ADAM, and RMSprop, using the learning rates recommended by their authors.

Dataset DenseNet121.adam DenseNet121.rmsprop DenseNet121.sgd DenseNet169.adam DenseNet169.rmsprop DenseNet169.sgd DenseNet201.adam DenseNet201.rmsprop DenseNet201.sgd InceptionResNetV2.adam InceptionResNetV2.rmsprop InceptionResNetV2.sgd InceptionV3.adam InceptionV3.rmsprop InceptionV3.sgd InceptionV4.adam InceptionV4.rmsprop InceptionV4.sgd MobileNet.adam MobileNet.rmsprop MobileNet.sgd NASNetMobile.adam NASNetMobile.rmsprop NASNetMobile.sgd ResNet50.adam ResNet50.rmsprop ResNet50.sgd VGG16.adam VGG16.rmsprop VGG16.sgd VGG19.adam VGG19.rmsprop VGG19.sgd Xception.adam Xception.rmsprop Xception.sgd
HAM10000 0.472 0.463 0.553 0.480 0.474 0.547 0.467 0.462 0.628 0.448 0.472 0.550 0.443 0.482 0.591 0.144 0.058 0.462 0.428 0.430 0.463 0.441 0.440 0.578 0.439 0.335 0.410 0.000 0.000 0.383 0.000 0.000 0.363 0.502 0.488 0.479
ISBI2016 0.246 0.239 0.342 0.269 0.214 0.321 0.256 0.259 0.367 0.263 0.232 0.389 0.293 0.259 0.307 0.061 0.027 0.155 0.190 0.171 0.309 0.227 0.223 0.254 0.255 0.219 0.303 0.000 0.000 0.000 0.000 0.000 0.000 0.281 0.267 0.281
ISBI2017 0.203 0.162 0.179 0.188 0.188 0.224 0.196 0.183 0.217 0.079 0.191 0.284 0.144 0.102 0.225 0.027 0.018 0.089 0.163 0.220 0.095 0.206 0.197 0.230 0.000 0.000 0.000 0.000 0.000 0.176 0.000 0.000 0.188 0.212 0.218 0.193
MED-NODE 0.559 0.530 0.506 0.579 0.561 0.504 0.529 0.560 0.508 0.542 0.579 0.505 0.551 0.537 0.567 0.396 0.258 0.494 0.377 0.394 0.533 0.415 0.314 0.466 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.569 0.560 0.539
MSK-1 0.459 0.464 0.575 0.432 0.463 0.560 0.450 0.456 0.555 0.424 0.376 0.592 0.327 0.443 0.574 0.047 0.053 0.368 0.345 0.426 0.494 0.292 0.334 0.533 0.389 0.406 0.366 0.000 0.000 0.487 0.000 0.000 0.461 0.517 0.532 0.405
MSK-2 0.272 0.268 0.314 0.275 0.254 0.323 0.273 0.279 0.325 0.279 0.237 0.327 0.244 0.257 0.282 0.036 0.028 0.197 0.229 0.260 0.263 0.244 0.238 0.269 0.222 0.232 0.258 0.000 0.000 0.239 0.000 0.000 0.157 0.295 0.294 0.232
MSK-3 0.176 0.093 0.093 0.172 0.107 0.114 0.169 0.159 0.165 0.116 0.060 0.095 0.147 0.069 0.080 0.100 0.071 0.044 0.184 0.146 0.124 0.180 0.114 0.119 0.103 0.090 0.166 0.000 0.000 0.000 0.000 0.000 0.000 0.110 0.078 0.149
MSK-4 0.315 0.273 0.406 0.273 0.267 0.391 0.311 0.286 0.393 0.336 0.309 0.398 0.305 0.333 0.365 0.061 0.037 0.270 0.224 0.290 0.269 0.157 0.174 0.302 0.256 0.271 0.270 0.000 0.000 0.000 0.000 0.000 0.000 0.279 0.291 0.273
PH2 0.718 0.675 0.778 0.714 0.692 0.766 0.678 0.733 0.771 0.686 0.680 0.762 0.682 0.669 0.647 0.401 0.190 0.580 0.647 0.619 0.700 0.470 0.474 0.640 0.696 0.651 0.719 0.000 0.000 0.317 0.000 0.000 0.204 0.740 0.648 0.808
UDA-1 0.396 0.384 0.386 0.359 0.349 0.400 0.368 0.347 0.394 0.359 0.380 0.419 0.330 0.316 0.336 0.089 0.057 0.281 0.279 0.335 0.360 0.179 0.277 0.351 0.310 0.350 0.330 0.000 0.000 0.286 0.000 0.000 0.259 0.365 0.396 0.348
UDA-2 0.479 0.345 0.465 0.420 0.287 0.455 0.382 0.299 0.596 0.523 0.336 0.438 0.522 0.364 0.540 0.390 0.141 0.514 0.393 0.328 0.375 0.376 0.379 0.427 0.516 0.298 0.414 0.000 0.000 0.000 0.000 0.000 0.000 0.553 0.486 0.439
Table 2: Average MCC values on test sets by using the three optimization algorithms.

Table 3 shows the results obtained after training the twelve CNN models with the three selected optimization algorithms, SGD, ADAM, and RMSprop; Adam and RMSprop used the same learning rate as SGD.

Dataset DenseNet121.adam DenseNet121.rmsprop DenseNet121.sgd DenseNet169.adam DenseNet169.rmsprop DenseNet169.sgd DenseNet201.adam DenseNet201.rmsprop DenseNet201.sgd InceptionResNetV2.adam InceptionResNetV2.rmsprop InceptionResNetV2.sgd InceptionV3.adam InceptionV3.rmsprop InceptionV3.sgd InceptionV4.adam InceptionV4.rmsprop InceptionV4.sgd MobileNet.adam MobileNet.rmsprop MobileNet.sgd NASNetMobile.adam NASNetMobile.rmsprop NASNetMobile.sgd ResNet50.adam ResNet50.rmsprop ResNet50.sgd VGG16.adam VGG16.rmsprop VGG16.sgd VGG19.adam VGG19.rmsprop VGG19.sgd Xception.adam Xception.rmsprop Xception.sgd
HAM10000 0.484 0.513 0.553 0.492 0.502 0.547 0.478 0.497 0.628 0.492 0.449 0.550 0.470 0.468 0.591 0.013 0.000 0.462 0.459 0.451 0.463 0.452 0.400 0.578 0.000 0.000 0.410 0.000 0.000 0.383 0.000 0.000 0.363 0.403 0.492 0.479
ISBI2016 0.329 0.306 0.342 0.281 0.299 0.321 0.270 0.297 0.367 0.235 0.278 0.389 0.182 0.314 0.307 0.014 0.025 0.155 0.283 0.252 0.309 0.076 0.018 0.254 0.000 0.000 0.303 0.000 0.000 0.000 0.000 0.000 0.000 0.248 0.256 0.281
ISBI2017 0.215 0.202 0.179 0.227 0.234 0.224 0.251 0.21 0.217 0.172 0.176 0.284 0.141 0.195 0.225 0.011 0.013 0.089 0.178 0.193 0.095 0.160 0.061 0.230 0.000 0.000 0.000 0.000 0.000 0.176 0.000 0.000 0.188 0.205 0.218 0.193
MED-NODE 0.486 0.511 0.506 0.521 0.600 0.504 0.613 0.603 0.508 0.529 0.517 0.505 0.498 0.563 0.567 0.122 0.066 0.494 0.503 0.545 0.533 0.284 0.076 0.466 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.657 0.552 0.539
MSK-1 0.493 0.473 0.575 0.494 0.514 0.560 0.508 0.495 0.555 0.242 0.402 0.592 0.431 0.479 0.574 0.032 0.042 0.368 0.396 0.354 0.494 0.063 0.021 0.533 0.000 0.000 0.366 0.000 0.000 0.487 0.000 0.000 0.461 0.480 0.496 0.405
MSK-2 0.280 0.296 0.314 0.299 0.285 0.323 0.262 0.291 0.325 0.221 0.245 0.327 0.185 0.259 0.282 0.010 0.014 0.197 0.233 0.253 0.263 0.092 0.049 0.269 0.000 0.000 0.258 0.000 0.000 0.239 0.000 0.000 0.157 0.225 0.285 0.232
MSK-3 0.148 0.052 0.093 0.174 0.135 0.114 0.069 0.114 0.165 0.021 0.045 0.095 0.079 0.077 0.080 0.092 0.018 0.044 0.093 0.154 0.124 0.066 0.047 0.119 0.000 0.000 0.166 0.000 0.000 0.000 0.000 0.000 0.000 0.080 0.115 0.149
MSK-4 0.303 0.323 0.406 0.304 0.291 0.391 0.266 0.346 0.393 0.222 0.214 0.398 0.178 0.318 0.365 0.023 0.036 0.270 0.278 0.282 0.269 0.072 0.035 0.302 0.000 0.000 0.270 0.000 0.000 0.000 0.000 0.000 0.000 0.303 0.285 0.273
PH2 0.669 0.679 0.778 0.700 0.659 0.766 0.691 0.736 0.771 0.528 0.609 0.762 0.636 0.724 0.647 0.069 0.067 0.580 0.662 0.664 0.700 0.316 0.116 0.640 0.000 0.000 0.719 0.000 0.000 0.317 0.000 0.000 0.204 0.629 0.592 0.808
UDA-1 0.418 0.379 0.386 0.410 0.377 0.400 0.393 0.407 0.394 0.368 0.330 0.419 0.261 0.357 0.336 0.058 0.038 0.281 0.352 0.340 0.360 0.074 0.058 0.351 0.000 0.000 0.330 0.000 0.000 0.286 0.000 0.000 0.259 0.339 0.392 0.348
UDA-2 0.271 0.199 0.465 0.344 0.324 0.455 0.366 0.284 0.596 0.161 0.215 0.438 0.463 0.206 0.540 0.071 0.050 0.514 0.363 0.264 0.375 0.141 0.126 0.427 0.000 0.000 0.414 0.000 0.000 0.000 0.000 0.000 0.000 0.436 0.234 0.439
Table 3: Average MCC values on test sets by using the three optimization algorithms.

 

Weight balancing

Table 4 summarizes the results obtained after training the twelve CNN models but considering the weight balancing approach.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 0.559 0.554 0.568 0.564 0.588 0.476 0.470 0.584 0.000 0.369 0.367 0.467
ISBI2016 0.314 0.294 0.316 0.329 0.288 0.209 0.302 0.290 0.231 0.196 0.000 0.266
ISBI2017 0.235 0.242 0.270 0.281 0.255 0.092 0.216 0.229 0.177 0.199 0.181 0.183
MED-NODE 0.496 0.462 0.464 0.561 0.540 0.532 0.575 0.514 0.000 0.000 0.000 0.534
MSK-1 0.559 0.544 0.545 0.595 0.607 0.300 0.524 0.550 0.427 0.431 0.153 0.407
MSK-2 0.282 0.303 0.276 0.323 0.265 0.202 0.281 0.235 0.197 0.256 0.223 0.221
MSK-3 0.088 0.162 0.129 0.162 0.167 0.069 0.121 0.090 0.250 0.000 0.000 0.133
MSK-4 0.318 0.329 0.311 0.360 0.331 0.270 0.252 0.288 0.244 0.218 0.139 0.259
PH2 0.779 0.773 0.819 0.794 0.771 0.661 0.780 0.727 0.760 0.678 0.280 0.794
UDA-1 0.432 0.351 0.406 0.437 0.368 0.318 0.395 0.295 0.364 0.279 0.059 0.348
UDA-2 0.460 0.408 0.345 0.385 0.537 0.322 0.432 0.317 0.478 0.000 0.000 0.416
Table 4: Average MCC values on test sets by using weight balancing.

 

Transfer learning

Table 5 shows the results of each model after applying transfer learning.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 0.750 0.757 0.756 0.674 0.686 0.724 0.725 0.709 0.315 0.546 0.424 0.702
ISBI2016 0.441 0.437 0.444 0.441 0.427 0.492 0.481 0.402 0.350 0.341 0.248 0.463
ISBI2017 0.442 0.439 0.448 0.412 0.457 0.444 0.439 0.410 0.255 0.272 0.155 0.456
MED-NODE 0.678 0.691 0.701 0.600 0.680 0.620 0.671 0.707 0.472 0.495 0.459 0.718
MSK-1 0.658 0.653 0.665 0.701 0.668 0.695 0.654 0.628 0.539 0.405 0.357 0.645
MSK-2 0.450 0.429 0.436 0.458 0.450 0.429 0.478 0.385 0.375 0.365 0.301 0.437
MSK-3 0.225 0.328 0.315 0.084 0.125 0.383 0.272 0.201 0.150 0.013 0.032 0.000
MSK-4 0.568 0.557 0.577 0.536 0.516 0.513 0.525 0.455 0.361 0.344 0.336 0.450
PH2 0.872 0.909 0.861 0.716 0.738 0.781 0.834 0.618 0.467 0.635 0.543 0.773
UDA-1 0.549 0.513 0.514 0.501 0.509 0.527 0.507 0.515 0.521 0.449 0.256 0.535
UDA-2 0.332 0.397 0.465 0.325 0.406 0.404 0.471 0.322 0.484 0.485 0.443 0.357
Table 5: Average MCC values on test sets by using transfer learning.

 

Data augmentation

Table 6 summarizes the results attained by applying the data augmentation (just in train) approach in each model.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 0.558 0.552 0.570 0.536 0.550 0.438 0.481 0.568 0.410 0.461 0.424 0.477
ISBI2016 0.318 0.301 0.278 0.322 0.316 0.260 0.298 0.286 0.303 0.205 0.235 0.242
ISBI2017 0.284 0.322 0.303 0.236 0.242 0.200 0.210 0.261 0.000 0.232 0.222 0.178
MED-NODE 0.485 0.503 0.514 0.562 0.614 0.417 0.639 0.501 0.000 0.567 0.504 0.544
MSK-1 0.587 0.591 0.594 0.550 0.582 0.557 0.523 0.564 0.366 0.466 0.462 0.375
MSK-2 0.306 0.295 0.315 0.261 0.262 0.190 0.262 0.271 0.258 0.222 0.239 0.236
MSK-3 0.153 0.168 0.163 0.322 0.218 0.273 0.256 0.238 0.166 0.107 0.136 0.275
MSK-4 0.300 0.254 0.282 0.366 0.323 0.288 0.204 0.247 0.270 0.273 0.214 0.247
PH2 0.675 0.741 0.679 0.789 0.703 0.720 0.780 0.630 0.719 0.705 0.431 0.744
UDA-1 0.378 0.380 0.395 0.524 0.386 0.347 0.380 0.313 0.330 0.369 0.375 0.331
UDA-2 0.428 0.464 0.385 0.484 0.477 0.444 0.355 0.490 0.414 0.450 0.412 0.488
Table 6: Average MCC values on test sets by using data augmentation in train.

Table 7 summarizes the results attained by applying the data augmentation (in train and test) approach in each model.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 0.761 0.750 0.753 0.912 0.873 0.798 0.760 0.874 0.510 0.661 0.649 0.921
ISBI2016 0.664 0.630 0.656 0.782 0.655 0.563 0.575 0.750 0.403 0.507 0.511 0.754
ISBI2017 0.710 0.736 0.715 0.847 0.749 0.622 0.744 0.761 0.100 0.584 0.575 0.806
MED-NODE 0.518 0.520 0.514 0.570 0.618 0.464 0.660 0.501 0.100 0.579 0.540 0.584
MSK-1 0.797 0.781 0.792 0.857 0.754 0.701 0.785 0.762 0.466 0.625 0.610 0.748
MSK-2 0.646 0.619 0.631 0.791 0.518 0.462 0.531 0.711 0.358 0.457 0.428 0.753
MSK-3 0.548 0.586 0.588 0.819 0.565 0.500 0.532 0.697 0.266 0.255 0.227 0.819
MSK-4 0.655 0.668 0.696 0.812 0.693 0.670 0.596 0.704 0.370 0.583 0.467 0.763
PH2 0.771 0.819 0.778 0.907 0.840 0.849 0.902 0.835 0.819 0.841 0.587 0.936
UDA-1 0.484 0.524 0.501 0.688 0.489 0.445 0.535 0.524 0.430 0.572 0.555 0.587
UDA-2 0.472 0.503 0.408 0.521 0.471 0.453 0.403 0.490 0.514 0.450 0.412 0.538
Table 7: Average MCC values on test sets by using data augmentation in train and test.

 

Combining transfer learning and data augmentation

Table 8 shows the results of combining transfer learning and data augmentation.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 0.944 0.937 0.954 0.931 0.940 0.874 0.945 0.934 0.870 0.763 0.601 0.959
ISBI2016 0.828 0.820 0.850 0.803 0.802 0.724 0.850 0.805 0.385 0.557 0.625 0.799
ISBI2017 0.868 0.858 0.854 0.857 0.829 0.759 0.875 0.832 0.414 0.743 0.738 0.846
MED-NODE 0.751 0.727 0.698 0.675 0.732 0.559 0.741 0.660 0.289 0.611 0.486 0.745
MSK-1 0.883 0.887 0.880 0.874 0.868 0.796 0.886 0.843 0.350 0.667 0.708 0.856
MSK-2 0.836 0.822 0.830 0.807 0.805 0.719 0.860 0.785 0.350 0.563 0.561 0.815
MSK-3 0.967 0.980 1.000 0.959 0.959 0.756 1.000 1.000 0.606 0.907 0.911 0.927
MSK-4 0.865 0.853 0.864 0.852 0.844 0.772 0.890 0.857 0.482 0.906 0.825 0.822
PH2 0.987 0.960 0.960 0.939 0.963 0.833 0.963 0.934 0.836 0.909 0.923 0.944
UDA-1 0.718 0.721 0.764 0.725 0.720 0.680 0.781 0.706 0.463 0.601 0.585 0.692
UDA-2 0.305 0.459 0.522 0.464 0.413 0.327 0.577 0.548 0.485 0.425 0.477 0.362
Table 8: Average MCC values on test sets by using transfer learning and data augmentation in train and test.

Complexity of the Convolutional Neural Network structures used in this work

The following Tables show some useful metrics to measure the complexity of the CNN models applied in this work. The run time and the amount of utilized GPU memory are reported considering all datasets. The models were analysed considering the settings from Phase 1, meaning that data augmentation was not performed. Regarding run time, we considered two scenarios: (I) how long it takes a CNN model to complete 150 epochs and (II) how long it takes a CNN model to complete an evaluation cycle (150 epochs × 10 folds × 3 repetitions); the run time is expressed in hours and the amount of GPU memory in megabytes.

Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 3.88 5.14 6.50 7.83 3.87 5.46 1.68 6.03 3.29 3.81 4.38 4.62
ISBI2016 1.13 1.56 1.93 2.06 0.97 1.27 0.40 1.94 0.79 0.76 0.85 0.96
ISBI2017 1.75 2.37 2.97 3.36 1.63 2.22 0.68 2.85 1.35 1.45 1.65 1.79
MED-NODE 0.68 0.95 1.16 1.09 0.48 0.57 0.18 1.24 0.37 0.25 0.26 0.35
MSK-1 1.06 1.46 1.81 1.90 0.90 1.16 0.36 1.82 0.72 0.68 0.77 0.86
MSK-2 1.24 1.69 2.11 2.29 1.08 1.43 0.45 2.09 0.89 0.87 0.98 1.10
MSK-3 0.70 1.00 1.21 1.14 0.51 0.61 0.20 1.28 0.39 0.29 0.31 0.38
MSK-4 0.99 1.36 1.67 1.77 0.82 1.05 0.33 1.72 0.65 0.60 0.67 0.77
PH2 0.69 0.97 1.18 1.12 0.50 0.58 0.19 1.25 0.38 0.27 0.28 0.37
UDA-1 0.84 1.17 1.44 1.49 0.65 0.81 0.26 1.47 0.52 0.43 0.47 0.56
UDA-2 0.66 0.91 1.11 1.01 0.44 0.50 0.16 1.17 0.33 0.21 0.22 0.30
Average 1.24 1.69 2.10 2.28 1.08 1.42 0.44 2.08 0.88 0.87 0.99 1.10
Table 9: Run time employed by the CNN models during training for 150 epochs. The run time is expressed in hours.
Dataset DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 InceptionV3 InceptionV4 MobileNet NASNetMobile ResNet50 VGG16 VGG19 Xception
HAM10000 116.35 154.29 194.92 234.88 116.10 163.82 50.41 180.96 98.73 114.21 131.42 138.65
ISBI2016 34.01 46.86 57.79 61.66 29.22 38.01 11.94 58.28 23.61 22.73 25.56 28.80
ISBI2017 52.36 70.99 89.13 100.80 48.87 66.62 20.49 85.43 40.51 43.40 49.50 53.58
MED-NODE 20.46 28.48 34.86 32.57 14.47 17.09 5.46 37.18 11.05 7.44 7.79 10.37
MSK-1 31.93 43.84 54.45 57.11 27.13 34.91 10.95 54.73 21.58 20.48 22.98 25.91
MSK-2 37.13 50.74 63.22 68.74 32.50 42.83 13.40 62.68 26.59 26.17 29.48 32.99
MSK-3 20.99 29.92 36.25 34.29 15.42 18.29 5.89 38.49 11.75 8.60 9.24 11.53
MSK-4 29.72 40.77 50.04 53.01 24.48 31.55 9.88 51.61 19.63 17.92 20.01 23.04
PH2 20.68 29.24 35.43 33.47 14.93 17.50 5.68 37.58 11.29 7.95 8.44 10.96
UDA-1 25.16 35.08 43.13 44.66 19.62 24.33 7.71 44.24 15.46 12.90 14.23 16.92
UDA-2 19.82 27.40 33.16 30.24 13.31 15.14 4.93 35.25 9.95 6.43 6.56 8.90
Table 10: Run time employed by the CNN models to complete an evaluation cycle (150 epochs × 10 folds × 3 repetitions). The run time is expressed in hours.
CNN GPU memory (megabytes) Parameters (millions)
MobileNet 671 4
NASNetMobile 703 5
ResNet50 873 25
DenseNet121 933 8
DenseNet169 1015 14
DenseNet201 1043 20
InceptionV3 1085 23
InceptionV4 1241 41
Xception 1271 22
InceptionResNetV2 1437 55
VGG16 2051 138
VGG19 2099 143
Table 11: GPU memory used by the Convolutional Neural Network models. The models are sorted by GPU memory.

At the ages of fifty four fifty can advise you that I'onal ended up lucky not to have wanted the product sooner, nevertheless loosing your partner of 25yrs 2010 became a curve which modified me personally for a long time. Now there came out a place exactly where click to read fifty had visit to have my tastes fulfilled only to find out this plumbing related desired just a little poke. So I questioned my own Computer system doc intended for a little something with tiny facet is affecting. He or she provided the particular recommended you read Cialis regular 5mg. 1st working day fifty had 5mg without any help to discover more help in the event that t discovered virtually any difference considering the woman never was planning determine, which'azines our system and also l'meters being dedicated to the idea. Regardless, these materials Operates, along with is useful. And click here then up coming night time with your ex m took 10mg at 8pm, and the rest is heritage. Through 13:double zero fifty manufactured my own move, but it appeared to be the most element to live in place until finally the sunlight came up upward , 100%Pleased :)When i't thirty-two as well as gone pretty much 1,5 years without intercourse. I had created pop over to this website plenty of anxiousness related penile erection challenges. And hop over to here then We found this specific great which woman My spouse and i started courting, along with first 2 times us all sex didn'to determine which properly, and i also appeared to be worried about just what exactly your woman considered this matter. We obtained braveness to visit and request cialis approved from the health practitioner. When i had taken 10mg product and it labored perfectly. I could truthfully continue on having sex many times a day without the problems. Merely bad thing is a smallish frustration. For me this can be truly a wonder drug.