Department of Computing and Numerical Analysis, University of Cordoba
Department of Computer Architecture, University of Malaga

On how to improve tracklet-based gait recognition systems

Manuel J. Marín-Jiménez, Francisco M. Castro, Angel Carmona-Poyato, Nicolás Guil


Recently, short-term dense trajectories features (DTF) have shown state-of-the-art results in video recognition and retrieval. However, their use has not been extensively studied on the problem of gait recognition. Therefore, the goal of this work is to propose and evaluate diverse strategies to improve recognition performance in the task of gait recognition based on DTF. In particular, this paper will show that (i) the proposed RootDCS descriptor improves on DCS in most tested cases; (ii) selecting relevant trajectories in an automatic way improves the recognition performance in several situations; (iii) applying a metric learning technique to reduce dimensionality of feature vectors improves on standard PCA; and, (iv) binarization of low-dimensionality feature vectors not only reduces storage needs but also improves recognition performance in many cases. The experiments are carried out on the popular datasets CASIA, parts B and C, and TUM-GAID showing improvement on state-of-the-art results for most scenarios.

Who are they?

In this project, we explore how to improve gait recognition systems based on tracklets. The results are presented in [1].

Our approach

image thumbnail (click to enlarge)

Pipeline of the evaluated gait recognition system. (a) Input video. (b) Person-focused tracklets. (c) Pyramidal Fisher Motion descriptor. (d) Projected and compressed descriptor. (e) Classifier (e.g. SVM or NN). (f) An identity is selected from the classification scores.


Filename Description Size
Source code for improved system Coming soon ---

Related Publications

[1] M. Marin-Jimenez, F.M. Castro, A. Carmona-Poyato, N. Guil
On how to improve tracklet-based gait recognition systems
Pattern Recognition Letters (PRL), 2015
Document: PDF


This work has been partially funded by the Research Projects TIN2012-32952 (Spanish Ministry of Science and Technology) and TIC-1692 (Junta de Andalucía).